(2010•龍巖)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
【答案】分析:(1)小題把已知點(diǎn)A B C的坐標(biāo)代入解析式即可求出拋物線的解析式;
(2)小題利用解析式y(tǒng)=-x,求出ON是∠BOC的平分線,進(jìn)一步證出MN是BC的垂直平分線,就能判斷三角形的形狀;
(3)小題利用已知點(diǎn)的坐標(biāo)和平行四邊形的性質(zhì)設(shè)出P點(diǎn)的坐標(biāo)就能分別求出未知點(diǎn)P  F的坐標(biāo).
解答:解:(1)設(shè)所求的拋物線解析式y(tǒng)=ax2+bx+c,
∵點(diǎn)A、B、C均在此拋物線上,


∴所求的拋物線解析式為y=-x-4,
即y=(x-1)2-,
∴頂點(diǎn)D的坐標(biāo)為(1,-),

(2)△EBC的形狀為等腰三角形,
證明:
∵直線MN的函數(shù)解析式為y=-x,
∴ON是∠BOC的平分線,
∵B、C兩點(diǎn)的坐標(biāo)分別為(4,0),(0,-4),
∴CO=BO=4,
∴MN是BC的垂直平分線,
∴CE=BE,
即△ECB是等腰三角形,

(3)答:存在,
∵PF∥ED,
∴要使以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形,只要使PF=ED,
∵點(diǎn)E是拋物線的對稱軸和直線的交點(diǎn),
∴E點(diǎn)的坐標(biāo)為(1,-1),
∴ED=-1-(-)=,
∵點(diǎn)P是直線上的動點(diǎn),
∴設(shè)P點(diǎn)的坐標(biāo)為(k,-k),
則直線PF的函數(shù)解析式為x=k,
∵點(diǎn)F是拋物線和直線PF的交點(diǎn),
∴F的坐標(biāo)為(k,),
∴PF=,
∴-,
∴k=±1,
當(dāng)k=1時(shí),點(diǎn)P的坐標(biāo)為(1,-1),F(xiàn)的坐標(biāo)為(1,),
此時(shí)PF與ED重合,不存在以P、F、D、E為頂點(diǎn)的平行四邊形,
當(dāng)k=-1時(shí),點(diǎn)P的坐標(biāo)為(-1,1),F(xiàn)的坐標(biāo)為(-1,),
此時(shí),四邊形PFDE是平行四邊形.
點(diǎn)評:解此題的關(guān)鍵是檢查對求拋物線的解析式的掌握(即已知拋物線上點(diǎn)的坐標(biāo)求解析式),能利用點(diǎn)的坐標(biāo)特點(diǎn)解決幾何問題(判斷三角形的形狀).突破點(diǎn)是利用平行四邊形的性質(zhì)求出P、F 的坐標(biāo),并進(jìn)行分類討論進(jìn)一步求出答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•龍巖)如圖,在等腰梯形ABCD中,AB∥CD,點(diǎn)E、F在AB上,且AE=BF,連接CE、DF.求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•龍巖)如圖是圓心角為30°,半徑分別是1、3、5、7、…的扇形組成的圖形,陰影部分的面積依次記為S1、S2、S3、…,則S50=    (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•龍巖)如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AC=8,則EF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•龍巖)如圖,若圓錐底面圓的半徑為3,則該圓錐側(cè)面展開圖扇形的弧長為( )

A.2π
B.4π
C.6π
D.9π

查看答案和解析>>

同步練習(xí)冊答案