【題目】如圖,在△ABC中,∠C=90°,BC=8cm,AC=6cm,點(diǎn)E是BC的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),先以1cm/s的速度沿A→C運(yùn)動(dòng),然后以2cm/s的速度沿C→B運(yùn)動(dòng).若設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒,那么當(dāng)t=__時(shí),△APE的面積等于6 cm2.
【答案】3或7或9
【解析】
分為兩種情況討論:當(dāng)點(diǎn)P在AC上時(shí):當(dāng)點(diǎn)P在BC上時(shí),根據(jù)三角形的面積公式建立方程求出其解即可.
解:如圖1,當(dāng)點(diǎn)P在AC上,
∵△ABC中,∠C=90°,BC=8cm,AC=6cm,點(diǎn)E是BC的中點(diǎn),
∴CE=4,AP=t.
∵△APE的面積等于6,
∴S△APE=APCE=AP×4=6,
∴AP=3,
∴t=3.
如圖2,當(dāng)點(diǎn)P在BC上,
∵E是DC的中點(diǎn),
∴CE=4.
∵△APE的面積等于6,
S△APE=ACPE=PE×6=6,
∴PE=2
①當(dāng)點(diǎn)P在點(diǎn)E的左側(cè)時(shí),PE=4-2(t-6)=16-2t,
∴16-2t=2
∴t=7,
②當(dāng)點(diǎn)P在點(diǎn)E的右側(cè)時(shí),PE=2(t-6)-4=2t-16,
∴2t-16=2,
∴t=9,
綜上,當(dāng)t=3或7或9時(shí),△APE的面積等于6 cm2.
故答案為:3或7或9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉淼膎倍,得到△AB′C′,即如圖,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,那么θ= , n= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國(guó)夢(mèng)校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm,整數(shù)點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且點(diǎn)P只能向上或向右運(yùn)動(dòng),請(qǐng)回答下列問題:
(1)填表:
(2)當(dāng)P點(diǎn)從點(diǎn)O出發(fā)10秒,可得到的整數(shù)點(diǎn)的個(gè)數(shù)是 個(gè).
(3)當(dāng)P點(diǎn)從點(diǎn)O出發(fā) 秒時(shí),可得到整數(shù)點(diǎn)(10 ,5).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:探究與應(yīng)用
(1)如圖1,在正方形ABCD中,AB=2,點(diǎn)E是邊AD的中點(diǎn),請(qǐng)?jiān)趯?duì)角線AC上找一點(diǎn)P,使得PE+PD的值最小,并求出這個(gè)最小值;(不用寫作法,保留作圖痕跡)
(2)如圖2,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊BC的中點(diǎn),若點(diǎn)P是邊AB上一動(dòng)點(diǎn),當(dāng)△PED的周長(zhǎng)最小時(shí),求BP的長(zhǎng)度;
問題解決:
(3)某市規(guī)劃在市中心廣場(chǎng)內(nèi)修建一個(gè)矩形的活動(dòng)中心,如圖3,矩形OABC是它的規(guī)劃圖紙,其中A為入口,已知OA=30,OC=20,點(diǎn)E是邊AB的中點(diǎn),以頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系,點(diǎn)D是邊OA上一點(diǎn),若將△ABD沿BD翻折,點(diǎn)A恰好落在邊BC上的點(diǎn)F處,在點(diǎn)F處設(shè)一出口,點(diǎn)M、N分別是邊OA、OC上的點(diǎn),現(xiàn)規(guī)劃在點(diǎn)M、N、F、E四處各安置一個(gè)健身器材,并依次修建MN、NF、FE及EM四條小路,則是否存在點(diǎn)M、N,使得這四條小路的總長(zhǎng)度最小?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當(dāng)?shù)耐评砝碛苫驍?shù)學(xué)表達(dá)式:
如圖,在△ABC中,已知∠ADE=∠B,∠1=∠2,FG⊥AB于點(diǎn)G.
求證:CD⊥AB.
證明:∵∠ADE=∠B(已知),
∴DE∥BC( ① ),
∵ DE∥BC(已證),
∴ ② ( ③ ),
又∵∠1=∠2(已知),
∴ ④ ( ⑤ ),
∴CD∥FG(同位角相等,兩直線平行),
∴∠CDB=∠FGB(兩直線平行,同位角相等),
∵ FG⊥AB(已知),
∴∠FGB=90°(垂直的定義).
∴∠CDB=90°
∴CD⊥AB(垂直的定義).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x滿足,求的值.
解:設(shè),,則,,
所以== ==32-2×2=5.
請(qǐng)運(yùn)用上面的方法求解下面的問題:
(1)若滿足,求 的值;
(2)已知正方形ABCD的邊長(zhǎng)為,E、F分別是AD、DC上的點(diǎn),且AE=1,CF=3,長(zhǎng)方形EMFD的面積是35,求長(zhǎng)方形EMFD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測(cè)試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績(jī)情況,隨機(jī)抽取了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績(jī),并將測(cè)試得到的成績(jī)繪成了下面兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中______,并補(bǔ)全條形圖;
(2)樣本數(shù)據(jù)的平均數(shù)是______,眾數(shù)是______,中位數(shù)是______;
(3)該區(qū)體育中考選報(bào)引體向上的男生共有1200人,如果體育中考引體向上達(dá)6個(gè)以上(含6個(gè))得滿分,請(qǐng)你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=6,AB=5,則AE的長(zhǎng)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com