【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.

求證:(1)BD是⊙O的切線;(2)CE2=EH·EA.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:1)由圓周角定理和已知條件證出∠ODB=ABC,再證出∠ABC+DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切線;(2)連接AC由垂徑定理得出,即可得出∠CAE=ECB,再由公共角∠CEA=HEC,證明△CEH∽△AEC,得出對應邊成比例,即可得出結論.

試題解析:(1)∵∠ODBAEC,AECABC,

∴∠ODBABC

OFBC,

∴∠BFD90°,

∴∠ODBDBF90°,

∴∠ABCDBF90°,即∠OBD90°,

BDOB,

BD是⊙O的切線!

(2)連接AC,

OFBC,

,

∴∠ECBCAE

又∵∠HECCEA,

∴△CEH∽△AEC,

,

CE2EH·EA.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線m:y=2x+2是直線n向右平移2個單位再向下平移5個單位得到的,而(2a,7)在直線n上,則a=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為建設秀美龍江,某學校組織師生參加一年一度的植樹綠化工作,準備租用7輛客車,現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表,設租用甲種客車x輛,租車總費用為y元,

甲種客車

乙種客車

載客量/(人/輛)

60

40

租金/(元/輛)

360

300

(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關系式。

(2)若該校共有350名師生前往參加勞動,共有多少種租車方案?

(3)帶隊老師從學校預支租車費用2400元,試問預支的租車費用是否可有結余?若有結余,最多可結余多少元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b與坐標軸交于C,D兩點,直線AB與坐標軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).

(1)求點A,C的坐標;

(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;

(3)在(2)的條件下,點M在直線CD上,坐標平面內是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一元二次方程ax2+bx+c0中的a3,b0,c=﹣2,則這個一元二次方程是( 。

A.3x220B.3x2+20C.3x2+x0D.3x2x0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】巴黎與北京的時差為﹣7小時(正數(shù)表示同一時刻比北京時間早的時數(shù)),如果北京時間11月11日14:00,那么巴黎時間是( )
A.11月11日21時
B.11月11日7時
C.11月10日7時
D.11月11日5時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE∥AC,CE∥BD,DE、CE相交于點E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊BCx軸重合,連接對角線BDy軸于點E,過點AAGBD于點G,直線GFAD于點F,ABOC的長分別是一元二次方程x-5x+6=0的兩根(ABOC),且tanADB=.

(1)求點E、點G的坐標;

(2)直線GFAGDAGFDGF兩個三角形,且SAGFSDGF =3:1,求直線GF的解析式;

(3)點Py軸上,在坐標平面內是否存在一點Q,使以點B、DP、Q為頂點的四邊形是矩形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣4x+4=0的解是

查看答案和解析>>

同步練習冊答案