【題目】若一元二次方程ax2+bx+c0中的a3,b0,c=﹣2,則這個一元二次方程是( 。

A.3x220B.3x2+20C.3x2+x0D.3x2x0

【答案】A

【解析】

a、b、c的值代入一元二次方程ax2+bx+c0即可.

a3b0,c=﹣2代入一元二次方程ax2+bx+c0,得

3x220

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點(diǎn),∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,P為Rt△ABC所在平面內(nèi)任意一點(diǎn)(不在直線AC上),∠ACB=90°,M為AB邊中點(diǎn).操作:以PA、PC為鄰邊作平行四邊形PADC,連續(xù)PM并延長到點(diǎn)E,使ME=PM,連接DE. 探究:

(1)請猜想與線段DE有關(guān)的三個結(jié)論;
(2)請你利用圖2,圖3選擇不同位置的點(diǎn)P按上述方法操作;
(3)經(jīng)歷(2)之后,如果你認(rèn)為你寫的結(jié)論是正確的,請加以證明; 如果你認(rèn)為你寫的結(jié)論是錯誤的,請用圖2或圖3加以說明;
(注意:錯誤的結(jié)論,只要你用反例給予說明也得分)
(4)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖4操作,并寫出與線段DE有關(guān)的結(jié)論(直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(1,-2)關(guān)于y軸對稱的點(diǎn)P'的坐標(biāo)為__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2bxc(a≠0)的圖象如圖所示,那么下面六個代數(shù)式:abc;②b2-4ac;③a-bc;④abc;⑤2a-b;⑥9a-4b中,值小于0的有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長線上一點(diǎn),且∠ODB=∠AEC.

求證:(1)BD是⊙O的切線;(2)CE2=EH·EA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時,學(xué)生的注意力逐步增強(qiáng),中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知, 學(xué)生的注意力指標(biāo)數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中ABBC分別為線段,CD為雙曲線的一部分)

(1)開始上課后第5分鐘時與第30分鐘時相比較,何時學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B﹦90°,AB﹦8cm,AD﹦24cm,BC﹦26cm,點(diǎn)p從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動;點(diǎn)Q從點(diǎn)C同時出發(fā),以3cm/s的速度向點(diǎn)B運(yùn)動,規(guī)定其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t s.
(1)t為何值時,四邊形PQCD為平行四邊形?
(2)t為何值時,四邊形PQCD為等腰梯形?(等腰梯形的兩腰相等,兩底角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=6,DC=8,菱形EFGH的三個頂點(diǎn)E、G、H分別在矩形ABCD的邊AB、CD、DA上,AH=2.
(1)若DG=6,求AE的長;
(2)若DG=2,求證:四邊形EFGH是正方形.

查看答案和解析>>

同步練習(xí)冊答案