解答:解:(1)∵cot∠ABO=3,
∴設(shè)OA=x,OB=3x,
則在Rt△AOB中,AB=
=
=
x,
∵AB=
,
∴x=1,
∴OA=1,OB=3,
∴點(diǎn)A(-1,0),B(0,3),
設(shè)拋物線C
1的解析式為y=ax
2+bx+c,
則
,
解得
,
∴拋物線C
1的解析式為y=-x
2+2x+3;
(2)∵OB=3,
∴OB的中點(diǎn)H的坐標(biāo)為(0,
),
∴點(diǎn)H關(guān)于x軸的對(duì)稱點(diǎn)H′的坐標(biāo)為(0,-
),
∵拋物線C
1的對(duì)稱軸為直線x=-
=1,
∴點(diǎn)B關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)B′(2,3),
連接B′H′,與x軸的交點(diǎn)即為N,與對(duì)稱軸的交點(diǎn)即為K,
設(shè)直線B′H′的解析式為y=kx+b,
則
,
解得
,
∴直線B′H′的解析式為y=
x-
,
令y=0,則
x-
=0,
解得x=
,
∴點(diǎn)N的坐標(biāo)為(
,0),
當(dāng)x=1時(shí),y═
×1-
=
,
∴點(diǎn)K的坐標(biāo)為(1,
),
B′H′=
=
,
即點(diǎn)P運(yùn)動(dòng)的最短總路徑長(zhǎng)
;
(3)令y=0,則-x
2+2x+3=0,
解得x
1=-1,x
2=3,
∴點(diǎn)E的坐標(biāo)為(3,0),
又∵y=-x
2+2x+3=-(x-1)
2+4,
∴頂點(diǎn)D的坐標(biāo)為(1,4),
∴DF=4,EF=3-1=2,
∵以M、G、E為頂點(diǎn)的三角形與以D、E、F為頂點(diǎn)的三角形全等,
∴①EG與DF是對(duì)應(yīng)邊時(shí),EG=DF=4,MG=EF=2,
若點(diǎn)G在點(diǎn)E的左邊,則OG=EG-OE=4-3=1,
∴點(diǎn)M的坐標(biāo)為M
1(-1,-2),
此時(shí)a=-1,b=-2,
若點(diǎn)G在點(diǎn)E的右邊,則OG=EG+OE=4+3=7,
∴點(diǎn)M的坐標(biāo)為M
2(7,-2),
此時(shí)a=7,b=-2;
②EG與EF是對(duì)應(yīng)邊時(shí),EG=EF=2,MG=DF=4,
若點(diǎn)G在點(diǎn)E的左邊,則OG=OE-EG=3-2=1,
∴點(diǎn)M的坐標(biāo)為M
3(1,-4),
此時(shí)a=1,b=-4,
若點(diǎn)G在點(diǎn)E的右邊,則OG=EG+OE=2+3=5,
∴點(diǎn)M的坐標(biāo)為M
4(5,-4),
此時(shí)a=5,b=-4.