如圖中的四邊形都是正方形,三角形為直角三角形.其中,四個(gè)正方形面積分別為A、BCD,則它們之間的關(guān)系為________

 

 

答案:
解析:

A+B等于大正方形面積,C+D也等于大正方形面積,

    A+B=C+D

 

 


提示:

 

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,四邊形OABC是梯形,OA∥BC,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(3,4),點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)M在OA上運(yùn)動(dòng),從O點(diǎn)出發(fā)到A點(diǎn);動(dòng)點(diǎn)N在AB上運(yùn)動(dòng),從A點(diǎn)出發(fā)到B點(diǎn).兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),速度都是每秒1個(gè)單位長(zhǎng)度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止,設(shè)兩個(gè)點(diǎn)的運(yùn)動(dòng)時(shí)間為t(秒).
(1)求線段AB的長(zhǎng);當(dāng)t為何值時(shí),MN∥OC;
(2)設(shè)△CMN的面積為S,求S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;S是否有最小值?若有最小值,最小值是多少?
(3)連接AC,那么是否存在這樣的t,使MN與AC互相垂直?若存在,求出這時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們定義:“四個(gè)頂點(diǎn)都在三角形邊上的正方形是三角形的內(nèi)接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長(zhǎng)a1
2
2

(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個(gè)正方形DGHI的邊長(zhǎng)a2=
4
3
4
3
;繼續(xù)在圖2中的△HGA中按上述方法作第3個(gè)內(nèi)接正方形;…以此類推,則第n個(gè)內(nèi)接正方形的邊長(zhǎng)an=
2n
3n-1
2n
3n-1
.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們定義:“四個(gè)頂點(diǎn)都在三角形邊上的正方形是三角形的內(nèi)接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長(zhǎng)a1是______;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個(gè)正方形DGHI的邊長(zhǎng)a2=______;繼續(xù)在圖2中的△HGA中按上述方法作第3個(gè)內(nèi)接正方形;…以此類推,則第n個(gè)內(nèi)接正方形的邊長(zhǎng)an=______.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(32):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC是梯形,OA∥BC,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(3,4),點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)M在OA上運(yùn)動(dòng),從O點(diǎn)出發(fā)到A點(diǎn);動(dòng)點(diǎn)N在AB上運(yùn)動(dòng),從A點(diǎn)出發(fā)到B點(diǎn).兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),速度都是每秒1個(gè)單位長(zhǎng)度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止,設(shè)兩個(gè)點(diǎn)的運(yùn)動(dòng)時(shí)間為t(秒).
(1)求線段AB的長(zhǎng);當(dāng)t為何值時(shí),MN∥OC;
(2)設(shè)△CMN的面積為S,求S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;S是否有最小值?若有最小值,最小值是多少?
(3)連接AC,那么是否存在這樣的t,使MN與AC互相垂直?若存在,求出這時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市豐臺(tái)區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

我們定義:“四個(gè)頂點(diǎn)都在三角形邊上的正方形是三角形的內(nèi)接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長(zhǎng)a1    ;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個(gè)正方形DGHI的邊長(zhǎng)a2=    ;繼續(xù)在圖2中的△HGA中按上述方法作第3個(gè)內(nèi)接正方形;…以此類推,則第n個(gè)內(nèi)接正方形的邊長(zhǎng)an=    .(n為正整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案