【題目】在△ABC中,CD是AB邊上的高,AC=4,BC=3,DB=
求:(1)求AD的長;
(2)△ABC是直角三角形嗎?為什么?
【答案】(1);(2)△ABC為直角三角形
【解析】試題分析:(1)由CD垂直于AB,得到三角形BCD與三角形ACD都為直角三角形,由BC與DB,利用勾股定理求出CD的長,再利用勾股定理求出AD的長即可;
(2)三角形ABC為直角三角形,理由為:由BD+AD求出AB的長,利用勾股定理的逆定理得到三角形ABC為直角三角形.
解:(1)∵CD⊥AB,
∴∠CDB=∠CDA=90°,
在Rt△BCD中,BC=3,DB=,
根據(jù)勾股定理得:CD==,
在Rt△ACD中,AC=4,CD=,
根據(jù)勾股定理得:AD==;
(2)△ABC為直角三角形,理由為:
∵AB=BD+AD=+=5,
∴AC2+BC2=AB2,
∴△ABC為直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在表示它所在的集合里:
,-(-6),
(1)正分數(shù)集合: { …};
(2)非負數(shù)集合: { …};
(3)整數(shù)集合: { …};
(4)非負整數(shù)集合:{ …};
(5)有理數(shù)集合: { …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數(shù)與900元購進的足球個數(shù)相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為5.試求下式的值:(a+b+cd)2016+(﹣cd)2017﹣x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,則四邊形CODE的周長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com