將點P(-2,2)關(guān)于x軸作軸對稱變換,得到點P′的坐標(biāo)是( )
A.(-2,-2)
B.(-2,2)
C.(2,2)
D.(2,-2)
【答案】分析:平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于x軸的對稱點的坐標(biāo)是(x,-y),故可以求得點P'的坐標(biāo).
解答:解:∵點P(-2,2)關(guān)于x軸對稱,
∴點P'的坐標(biāo)是(-2,-2).
故選A.
點評:對知識點的記憶方法是結(jié)合平面直角坐標(biāo)系的圖形記憶,另一種記憶方法是記。宏P(guān)于橫軸的對稱點,橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù);關(guān)于縱軸的對稱點,縱坐標(biāo)不變,橫坐標(biāo)變成相反數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中有一點A(
1
2
,-
3
2
),過A點作x軸的平行線l,在l上有一不與A點重合的點B,連接OA,OB.將OA繞O點順時針方向旋轉(zhuǎn)α°到OA1,OB繞O點逆時針方向旋轉(zhuǎn)α°到OB1
(1)當(dāng)B點在A點右側(cè)時,如圖(1).如果∠AOB=20°,∠A1OB=110°,α=
 
.這時直線AB1與直線A1B有何特殊的位置關(guān)系證明你的結(jié)論.
(2)如果B點的橫坐標(biāo)為t,△OAB的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)式,并指出t的取值范圍.
(3)當(dāng)α=60時,直線B1A交y軸于D,求以D為頂點且經(jīng)過A點的拋物線的解析式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年安徽省高級中等學(xué)校招生考試數(shù)學(xué) 題型:044

如圖,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐標(biāo)平面上三點.

(1)請畫出△ABC關(guān)于原點O對稱的△A1B1C1

(2)請寫出點B關(guān)天y軸對稱的點B2的坐標(biāo),若將點B2向上平移h個單位,使其落在△A1B1C1內(nèi)部,指出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐標(biāo)平面上三點。

(1)請畫出ΔABC關(guān)于原點O對稱的ΔA1B1C1
(2)請寫出點B關(guān)天y軸對稱的點B2的坐標(biāo),若將點B2向上平移h個單位,使其落在ΔA1B1C1內(nèi)部,指出h的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(43):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

在平面直角坐標(biāo)系中有一點A(),過A點作x軸的平行線l,在l上有一不與A點重合的點B,連接OA,OB.將OA繞O點順時針方向旋轉(zhuǎn)α°到OA1,OB繞O點逆時針方向旋轉(zhuǎn)α°到OB1
(1)當(dāng)B點在A點右側(cè)時,如圖(1).如果∠AOB=20°,∠A1OB=110°,α=______.這時直線AB1與直線A1B有何特殊的位置關(guān)系證明你的結(jié)論.
(2)如果B點的橫坐標(biāo)為t,△OAB的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)式,并指出t的取值范圍.
(3)當(dāng)α=60時,直線B1A交y軸于D,求以D為頂點且經(jīng)過A點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐標(biāo)平面上三點。

(1)請畫出ΔABC關(guān)于原點O對稱的ΔA1B1C1

(2)請寫出點B關(guān)天y軸對稱的點B2的坐標(biāo),若將點B2向上平移h個單位,使其落在ΔA1B1C1內(nèi)部,指出h的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案