【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(1)圖1中a的值為;
(2)求統(tǒng)計(jì)的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)這組初賽成績,由高到低確定9人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運(yùn)動(dòng)員能否進(jìn)入復(fù)賽.
【答案】
(1)25
(2)解:觀察條形統(tǒng)計(jì)圖得:
= =1.61;
∵在這組數(shù)據(jù)中,1.65出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是1.65;
將這組數(shù)據(jù)從小到大排列為,其中處于中間的兩個(gè)數(shù)都是1.60,
則這組數(shù)據(jù)的中位數(shù)是1.60
(3)解:能;
∵共有20個(gè)人,中位數(shù)是第10、11個(gè)數(shù)的平均數(shù),
∴根據(jù)中位數(shù)可以判斷出能否進(jìn)入前9名;
∵1.65m>1.60m,
∴能進(jìn)入復(fù)賽
【解析】解:(1)根據(jù)題意得:
1﹣20%﹣10%﹣15%﹣30%=25%;
則a的值是25;
故答案為:25;
本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識(shí)點(diǎn):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).(1)用整體1減去其它所占的百分比,即可求出a的值;(2)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義分別進(jìn)行解答即可;(3)根據(jù)中位數(shù)的意義可直接判斷出能否進(jìn)入復(fù)賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1 , 它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2 , 交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3 , 交x軸于點(diǎn)A3;…,如此進(jìn)行下去,直至得Cn . 若P(2014,m)在第n段拋物線Cn上,則m=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ADE,其中點(diǎn)B與點(diǎn)D是對應(yīng)點(diǎn),點(diǎn)C與點(diǎn)E是對應(yīng)點(diǎn),連接BD,則BD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時(shí)間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:
(1)暫停排水需要多少時(shí)間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時(shí),求Q關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論一定正確的是( )
A.∠DAB′=∠CAB′
B.∠ACD=∠B′CD
C.AD=AE
D.AE=CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是線段AB上的點(diǎn),點(diǎn)C,D分別是線段OA,OB的中點(diǎn),小明很輕松地求得CD=AB.他在反思過程中突發(fā)奇想:若點(diǎn)O在線段AB的延長線上或在直線AB外,則原有的結(jié)論“CD=AB”仍然成立嗎?請幫小明解決此問題(當(dāng)點(diǎn)O在線段AB的延長線上時(shí),請畫圖分析該結(jié)論是否成立,并說明理由;當(dāng)點(diǎn)O在直線AB外時(shí),作出圖形,通過度量說明該結(jié)論是否成立).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O與BC交于點(diǎn)D,與AC交于點(diǎn)E,連OD交BE于點(diǎn)M,且MD=2,則BE長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,P,Q分別從B,A出發(fā)沿BC,AD方向運(yùn)動(dòng),P點(diǎn)的運(yùn)動(dòng)速度是1cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度是2cm/秒,連接A,P并過Q作QE⊥AP垂足為E.
(1)求證:△ABP∽△QEA;
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運(yùn)動(dòng)時(shí)刻t表示△QEA的面積y(不要求考t的取值范圍).(提示:解答(2)(3)時(shí)可不分先后)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,O為BC的中點(diǎn),AC與半圓O相切于點(diǎn)D.
(1)求證:AB是半圓O所在圓的切線;
(2)若cos∠ABC= ,AB=12,求半圓O所在圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com