【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當2≤t≤3.5時,求Q關(guān)于t的函數(shù)表達式.

【答案】
(1)解:暫停排水需要的時間為:2﹣1.5=0.5(小時).

∵排水數(shù)據(jù)為:3.5﹣0.5=3(小時),一共排水900m3,

∴排水孔排水速度是:900÷3=300m3/h


(2)解:當2≤t≤3.5時,設Q關(guān)于t的函數(shù)表達式為Q=kt+b,易知圖象過點(3.5,0).

∵t=1.5時,排水300×1.5=450,此時Q=900﹣450=450,

∴(2,450)在直線Q=kt+b上;

把(2,450),(3.5,0)代入Q=kt+b,

,解得 ,

∴Q關(guān)于t的函數(shù)表達式為Q=﹣300t+1050


【解析】本題考查了一次函數(shù)的應用,主要考查學生能否把實際問題轉(zhuǎn)化成數(shù)學問題,題目比較典型,是一道比較好的題目.(1)暫停排水時,游泳池內(nèi)的水量Q保持不變,圖象為平行于橫軸的一條線段,由此得出暫停排水需要的時間;由圖象可知,該游泳池3個小時排水900(m3),根據(jù)速度公式求出排水速度即可;(2)當2≤t≤3.5時,設Q關(guān)于t的函數(shù)表達式為Q=kt+b,易知圖象過點(3.5,0),再求出(2,450)在直線y=kt+b上,然后利用待定系數(shù)法求出表達式即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】圖形變換中的數(shù)學,問題情境:在課堂上,興趣學習小組對一道數(shù)學問題進行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,點D是AB的中點,連接CD.

(1)探索發(fā)現(xiàn):
如圖①,BC與BD的數(shù)量關(guān)系是
(2)猜想驗證:
如圖②,若P是線段CB上一動點(點P不與點B,C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想BF,BP,BD三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)拓展延伸:
若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖③中補全圖象,并直接寫出BF、BP、BD三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在三角形ABC中,點O是AC邊上的一個動點,過點O做直線MN平行于BC,設MN∠BCA的平分線于點E,交∠BCA的外角平分線于點F.

(1)試說明:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】回答下面的例題:
解方程:x2﹣|x|﹣2=0.
解:①x≥0時,原方程化為x2﹣x﹣2=0,解得x1=2,x2=﹣1(不合題意,舍去).
②x<0時,原方程化為x2+x﹣2=0,解得x1=﹣2,x2=1(不合題意,舍去).
∴原方程的根是x1=2,x2=﹣2.
請參照例題解方程x2+|x﹣4|﹣8=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內(nèi)的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:

(1)圖1中a的值為
(2)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1:y=x+3與x軸交于點A,與y軸交于點B,且與雙曲線y= 交于點C(1,a).

(1)試確定雙曲線的函數(shù)表達式;
(2)將l1沿y軸翻折后,得到l2 , 畫出l2的圖象,并求出l2的函數(shù)表達式;
(3)在(2)的條件下,點P是線段AC上點(不包括端點),過點P作x軸的平行線,分別交l2于點M,交雙曲線于點N,求SAMN的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個不相等的實數(shù)根分別為a和b,且a2﹣ab+b2=18,則 + 的值是(
A.3
B.﹣3
C.5
D.﹣5

查看答案和解析>>

同步練習冊答案