下列4×4的正方形網(wǎng)格中,小正方形的邊長(zhǎng)均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( 。

B
根據(jù)勾股定理,AB==2,
BC=,AC=,所以△ABC的三邊之比為∶2=1∶2∶,A項(xiàng)三角形的三邊分別為2,=3,三邊之比為2∶∶3∶3,故本選項(xiàng)錯(cuò)誤;B項(xiàng)三角形的三邊分別為2,4,=2,三邊之比為2∶4∶2=1∶2∶,故本選項(xiàng)正確;C項(xiàng)三角形的三邊分別為2,3,,三邊之比為2∶3∶,故本選項(xiàng)錯(cuò)誤;D項(xiàng)三角形的三邊分別為,4,三邊之比為∶4,故本選項(xiàng)錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí)?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時(shí)刻t,使線段PQ恰好把△ABC的周長(zhǎng)和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A1,A2,A3,A4,…,An在射線OA上,點(diǎn)B1,B2,B3,…,Bn―1在射線OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An1AnBn1為陰影三角形,若△A2B1B2,△A3B2B3的面積分別為1、4,則△A1A2B1的面積為_(kāi)_________;面積小于2014的陰影三角形共有__________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,以對(duì)角線BD為一邊構(gòu)造一個(gè)矩形BDEF,使得另一邊EF過(guò)原矩形的頂點(diǎn)C.

(1)設(shè)Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1      S2+S3(用“>”、“=”、“<”填空);
(2)寫(xiě)出如圖中的三對(duì)相似三角形,并選擇其中一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,□ABCD中,點(diǎn)E是AD邊的中點(diǎn),BE交對(duì)角線AC于點(diǎn)F,若AF=2,則對(duì)角線AC長(zhǎng)為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ABC與△DEF相似且面積比為4∶25,則△ABC與△DEF的相似比為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中有點(diǎn)P、A、B、C,則圖中所形成的三角形中,相似的三角形是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果兩個(gè)相似三角形周長(zhǎng)的比是2:3,那么它們面積的比是_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠,,若,,則______.

查看答案和解析>>

同步練習(xí)冊(cè)答案