【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:

(1)圖中APD與哪個三角形全等?并說明理由;

(2)求證:APE∽△FPA;

(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.

【答案】(1)CPD.理由參見解析;(2)證明參見解析;(3)PC2=PEPF.理由參見解析.

【解析】

試題分析:(1)根據(jù)菱形的性質(zhì),利用SAS來判定兩三角形全等;(2)根據(jù)第一問的全等三角形結(jié)論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據(jù)相似三角形的對應(yīng)邊成比例及全等三角形的對應(yīng)邊相等即可得到結(jié)論.

試題解析:(1)APD≌△CPD.理由:四邊形ABCD是菱形,AD=CD,ADP=CDP.又PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=DCP,CDAB,∴∠DCF=DAP=CFB,又∵∠FPA=FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PEPF.理由:∵△APE∽△FPA,.即PA2=PEPF.∵△APD≌△CPD,PA=PC.PC2=PEPF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列各式中,化簡正確的是( 。

A. ﹣(+7)=﹣7 B. ﹣(﹣7)=﹣7

C. +(﹣7)=7 D. ﹣[+(﹣7)]=﹣7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】口袋內(nèi)裝有除顏色外完全相同的紅球、白球和黑球共10個,從中摸出一球,摸出紅球的概率是0.2,摸出白球的概率是0.5,那么黑球的個數(shù)是_____個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中正確的是(

A.a5+a5a10B.a7÷aa6C.a3a2a6D.(﹣a32=﹣a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實數(shù)0是(
A.有理數(shù)
B.無理數(shù)
C.正數(shù)
D.負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.

①依題意將圖2補全;

②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶去年承包荒山若干畝,投資7800 元改造后,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場上每千克售a元,在果園每千克售b元(ba).該農(nóng)戶將水果拉到市場出售平均每天出售1000千克,需8 人幫忙,每人每天付工資25元,農(nóng)用車運費及其他各項稅費平均每天100元.

1)分別用a,b表示兩種方式出售水果的收入?

2)若a=1.3元,b=1.1元,且兩種出售水果方式都在相同的時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好.

3)該農(nóng)戶加強(qiáng)果園管理,力爭到明年純收入達(dá)到15000元,那么純收入增長率是多少?(純收入=總收入﹣總支出,該農(nóng)戶采用了(2)中較好的出售方式出售)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)實生活中,如果收入1000元記作+1000元,那么﹣800表示( 。

A. 支出800 B. 收入800 C. 支出200 D. 收入200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABD△ACE,有下列判斷:

①ABAC;②∠B∠C;③∠BAC∠EAD;④ADAE.

請用其中的三個判斷作為條件,余下的一個判斷作為結(jié)論(用序號的形式),寫出一個由三個條件能推出結(jié)論成立的式子,并說明理由

查看答案和解析>>

同步練習(xí)冊答案