精英家教網 > 初中數學 > 題目詳情
對于一元二次方程ax2+bx+c=0(a≠0):
(1)當b2-4ac    0?方程有兩個不相等的實數根.
(2)當b2-4ac    0?方程有兩個相等的實數根.
(3)當b2-4ac    0?方程無實數根.
【答案】分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.
解答:解:因為一元二次方程的根的判別式△=b2-4ac,
當△>0時,方程有兩個不相等的實數根;
當△=0時,方程有兩個相等的實數根;
當△<0時,方程無實數根.
點評:一元二次方程根的判別式的應用是需要熟記的內容.
練習冊系列答案
相關習題

科目:初中數學 來源:三點一測叢書 九年級數學 上。ńK版課標本) 江蘇版課標本 題型:044

有一根為1的一元二次方程

對于關于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的兩個根分別為x1=1,x2.說明如下:

由于a+b+c=0,則c=-a-b

將c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

請利用上面推導出來的結論,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)請你寫出3個一元二次方程,使它們都有一個根是1.

查看答案和解析>>

科目:初中數學 來源:三點一測叢書九年級數學上 題型:022

有一根為1的一元二次方程

  對于關于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的兩個根分別為x1=1,x2.說明如下:

  由于a+b+c=0,則c=-a-b

  將c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

請利用上面推導出來的結論,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)請你寫出3個一元二次方程,使它們都有一個根是1.

查看答案和解析>>

同步練習冊答案