【題目】關于x的一元二次方程ax2+bx+=0有兩個相等的實數(shù)根,寫出一組滿足條件的實數(shù)a,b的值:a= , b=

【答案】4;2
【解析】由于關于x的一元二次方程ax2+bx+=0有兩個相等的實數(shù)根,得到a=b2 , 找一組滿足條件的數(shù)據(jù)即可.關于x的一元二次方程ax2+bx+=0有兩個相等的實數(shù)根,
∴△=b2﹣4×a=b2﹣a=0,
∴a=b2 ,
當b=2時,a=4,
故b=2,a=4時滿足條件.
所以答案是:4,2.
【考點精析】關于本題考查的求根公式,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) ,下列結(jié)論錯誤的是(
A.圖象經(jīng)過點(1,1)
B.當x<0時,y隨著x的增大而增大
C.當x>1時,0<y<1
D.圖象在第一、三象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2 , 一平行于AB的直線EF與這兩個半圓分別交于點E、點F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由 ,EF, ,AB所圍成圖形(圖中陰影部分)的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(2﹣(π﹣0+|﹣2|+4sin60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】首條貫通絲綢之路經(jīng)濟帶的高鐵線﹣寶蘭客專進入全線拉通試驗階段,寶蘭客專的通車對加快西北地區(qū)與一帶一路沿線國家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義.試運行期間,一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關系,根據(jù)圖象進行一下探究:

【信息讀取】

1)西寧到西安兩地相距 千米,兩車出發(fā)后 小時相遇;

2)普通列車到達終點共需 小時,普通列車的速度是 千米/小時.

【解決問題】

3)求動車的速度;

4)普通列車行駛t小時后,動車到達終點西寧,求此時普通列車還需行駛多少千米到達西安?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點EF之間距離是10cm,ABCD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點An的坐標為__

查看答案和解析>>

同步練習冊答案