在△ABC中,∠A=120°,AB=4,AC=2,則sinB的值是( )
A.
B.
C.
D.
【答案】分析:根據(jù)∠A=120°,得出∠DAC=60°,∠ACD=30°,得出AD=1,CD=,再根據(jù)BC=2,利用解直角三角形求出.
解答:解:延長(zhǎng)BA作CD⊥BD,
∵∠A=120°,AB=4,AC=2,
∴∠DAC=60°,∠ACD=30°,
∴2AD=AC=2,
∴AD=1,CD=,
∴BD=5,
∴BC=2,
∴sinB==,
故選:D.
點(diǎn)評(píng):此題主要考查了解直角三角形以及勾股定理的應(yīng)用,根據(jù)題意得出∠DAC=60°,∠ACD=30°是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

同步練習(xí)冊(cè)答案