如圖,⊙A與x軸相切于點(diǎn)O,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)P在⊙A上,且在第一象限,∠PAO=60°,⊙A沿x軸正方向滾動(dòng),當(dāng)點(diǎn)P第n次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)為   
【答案】分析:首先根據(jù)弧長(zhǎng)公式求得弧OP的長(zhǎng),則點(diǎn)P第1次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)即為弧OP的長(zhǎng);點(diǎn)P第2次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)即為圓周長(zhǎng)加上弧OP的長(zhǎng),以此推廣即可求解.
解答:解:根據(jù)弧長(zhǎng)公式,得
弧OP的長(zhǎng)==,圓周長(zhǎng)是2π,
則點(diǎn)P第1次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)是,點(diǎn)P第2次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)是2π+=
以此類(lèi)推,點(diǎn)P第n次落在x軸上時(shí),點(diǎn)P的橫坐標(biāo)是2(n-1)π+=π.
故答案為:π.
點(diǎn)評(píng):此題考查了弧長(zhǎng)公式以及規(guī)律的推廣.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙P與x軸相切于坐標(biāo)原點(diǎn)O,點(diǎn)A(0,2)是⊙P與y軸的交點(diǎn),點(diǎn)B(-2
2
,0)在x精英家教網(wǎng)軸上.連接BP交⊙P于點(diǎn)C,連接AC并延長(zhǎng)交x軸于點(diǎn)D.
(1)求線段BC的長(zhǎng);
(2)求直線AC的關(guān)系式;
(3)當(dāng)點(diǎn)B在x軸上移動(dòng)時(shí),是否存在點(diǎn)B,使△BOP相似于△AOD?若存在,求出符合條件的點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙M與x軸相切于原點(diǎn),平行于y軸的直線交圓于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方.若P點(diǎn)的坐標(biāo)是(2,1),求圓心M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙M與x軸相切于原點(diǎn),平行于y軸的直線交⊙M于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方.若點(diǎn)P的坐標(biāo)是(2,1),則圓心M的坐標(biāo)是
(0,2.5)
(0,2.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•倉(cāng)山區(qū)模擬)如圖,⊙M與x軸相切與原點(diǎn),平行于y軸的直線交⊙M于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方,若點(diǎn)P的坐標(biāo)是(
2
,2-
2
)
,PQ=2
2

(1)求⊙M的半徑R;
(2)求圖中陰影部分的面積(精確到0.1);
(3)已知直線AB對(duì)應(yīng)的一次函數(shù)y=x+2+2
2
,求證:AB是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔西南州模擬)如圖,⊙P與x軸相切于坐標(biāo)原點(diǎn)O,點(diǎn)A(0,2)是⊙P與y軸的交點(diǎn),點(diǎn)B(-2
2
,0)在x軸上,連接BP交⊙P于點(diǎn)C,連接AC并延長(zhǎng)交x軸于點(diǎn)D.
(1)求BC的長(zhǎng);
(2)寫(xiě)出經(jīng)過(guò)點(diǎn)A、點(diǎn)(1,0)、點(diǎn)(-1,6)的拋物線的解析式;
(3)求直線AC的函數(shù)解析式;
(4)點(diǎn)B在x軸上移動(dòng)時(shí),是否存在一點(diǎn)B′,使B′OP相似于△AOD?若存在,求出符合條件的點(diǎn)B'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案