問題情境:

用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:

有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標(biāo)系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.

解決問題:

根據(jù)以上步驟,請你解答“問題情境”.

考點:

一次函數(shù)的應(yīng)用;規(guī)律型:圖形的變化類。

專題:

閱讀型。

分析:

畫出相關(guān)圖形后可得這些點在一條直線上,設(shè)出直線解析式,把任意兩點代入可得直線解析式,進(jìn)而把x=2012代入可得相應(yīng)的棋子數(shù)目.

解答:

解:以圖形的序號為橫坐標(biāo),棋子的枚數(shù)為縱坐標(biāo),描點:(1,4)、(2,7)、(3,10)、(4,13)依次連接以上各點,所有各點在一條直線上,

設(shè)直線解析式為y=kx+b,把(1,4)、(2,7)兩點坐標(biāo)代入得

解得,

所以y=3x+1,

驗證:當(dāng)x=3時,y=10.

所以,另外一點也在這條直線上.

當(dāng)x=2012時,y=3×2012+1=6037.

答:第2012個圖有6037枚棋子.

點評:

考查一次函數(shù)的應(yīng)用;根據(jù)所給點畫出的相關(guān)圖形判斷出相應(yīng)的函數(shù)是解決本題的突破點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)問題情境:
用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:
有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標(biāo)系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.
解決問題:
根據(jù)以上步驟,請你解答“問題情境”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東濟(jì)寧卷)數(shù)學(xué)(帶解析) 題型:解答題

問題情境:
用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:
有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標(biāo)系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.
解決問題:
根據(jù)以上步驟,請你解答“問題情境”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山東省濟(jì)寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

問題情境:
用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:
有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標(biāo)系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.
解決問題:
根據(jù)以上步驟,請你解答“問題情境”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東濟(jì)寧卷)數(shù)學(xué)(解析版) 題型:解答題

問題情境:

用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:

有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標(biāo)系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.

解決問題:

根據(jù)以上步驟,請你解答“問題情境”.

 

【解析】此題把規(guī)律問題借助函數(shù)思想來探討,主要培養(yǎng)學(xué)生的應(yīng)變能力和空間想象能力

 

查看答案和解析>>

同步練習(xí)冊答案