【題目】(1)如圖①,已知△ABC為直角三角形,∠A=90°,若沿圖中虛線剪去∠A,則∠1+∠2等于( )
A.90° B.135° C.270° D.315°
(2)如圖②,已知△ABC中,∠A=40°,剪去∠A后成四邊形,則∠1+∠2=________°;
(3)根據(jù)(1)與(2)的求解過程,請(qǐng)你歸納猜想∠1+∠2與∠A的關(guān)系是______________.
【答案】(1)C;(2)220;(3)∠1+∠2=180°+∠A.
【解析】
(1)利用了四邊形內(nèi)角和為360°和直角三角形的性質(zhì)求解;
(2)根據(jù)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和求解;
(3)根據(jù)(1)(2)可以直接寫出結(jié)果;
解:(1)∵四邊形的內(nèi)角和為360°,直角三角形中兩個(gè)銳角的和為90°,
∴∠1+∠2=360°-(∠C+∠B)=360°-90°=270°.
故選C.
(2)在△ABC中,∠A=40°,
∠C+∠B=180°-40°=140°
∴∠1+∠2=360°-(∠C+∠B)=220°,
故答案是:220.
(3) 根據(jù)(1)(2)的結(jié)果可得:∠1+∠2=180°+∠A
故答案是:∠1+∠2=180°+∠A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,BE是⊙O的切線,B是切點(diǎn).
(1)求證:∠EBD=∠CAB;
(2)若BC=,AC=5,求sin∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在第一象限,點(diǎn)、的坐標(biāo)分別為、,,,直線交軸于點(diǎn),若與關(guān)于點(diǎn)成中心對(duì)稱,則點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),F為射線OC上一點(diǎn),OE⊥AB.
(1)用量角器和直角三角尺畫∠AOC的平分線OD,畫FG⊥OC,FG交AB于點(diǎn)G;
(2)在(1)的條件下,比較OF與OG的大小,并說明理由;
(3)在(1)的條件下,若∠BOC=40°,求∠AOD與∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把 6個(gè)相同的小正方體擺成如圖的幾何體.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)如果每個(gè)小正方體棱長為,則該幾何體的表面積是 .
(3)如果在這個(gè)幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個(gè)小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;
(2)設(shè)∠BAC= ,∠DCE= .
① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
② 如圖3,當(dāng)點(diǎn)D在線段CB的延長線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫出此時(shí)與之間的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8cm,BC=10cm,折疊矩形的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,折痕為AE.以點(diǎn)A為原點(diǎn),分別以AD所在的直線為x軸,AB所在的直線為y軸建立坐標(biāo)系.
(1)寫出點(diǎn)B、D、E、F的坐標(biāo);
(2)在坐標(biāo)軸上是否存在點(diǎn)G,使△AFG是以AF為腰長的等腰三角形?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉嘉參加機(jī)器人設(shè)計(jì)活動(dòng),需操控機(jī)器人在5×5的方格棋盤上從A點(diǎn)行走至B點(diǎn),且每個(gè)小方格皆為正方形,主辦單位規(guī)定了三條行走路徑R1,R2,R3,其行經(jīng)位置如圖與表所示:
路徑 | 編號(hào) | 圖例 | 行徑位置 |
第一條路徑 | R1 | _ | A→C→D→B |
第二條路徑 | R2 | … | A→E→D→F→B |
第三條路徑 | R3 | ▂ | A→G→B |
已知A、B、C、D、E、F、G七點(diǎn)皆落在格線的交點(diǎn)上,且兩點(diǎn)之間的路徑皆為直線,在無法使用任何工具測(cè)量的條件下,請(qǐng)判斷R1、R2、R3這三條路徑中,最長與最短的路徑分別為何?請(qǐng)寫出你的答案,并完整說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com