【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).
(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求出點(diǎn)Q坐標(biāo),使△BCQ是以BC為直角邊的直角三角形.
【答案】
(1)﹣3,(﹣1,0),(3,0)
(2)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,則M(1,﹣4),
拋物線的對稱軸交x軸于N,如圖(1),
四邊形ABMC的面積=S△AOC+S梯形OCMN+S△MNB= ×1×3+ ×(3+4)×1+ ×4×(3﹣1)=9
(3)解:存在.
作DE∥y軸交直線BC于E,如圖(2),
設(shè)直線BC的解析式為y=kx+b,
把B(3,0),C(0,﹣3)代入得 ,解得 ,
∴直線BC的解析式為y=x﹣3,
設(shè)D(x,x2﹣2x﹣3),則E(x,x﹣3),
∴DE=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
∴S△BCD= DE3=﹣ x2+ x=﹣ (x﹣ )2+ ,
當(dāng)x= 時,S△BCD有最大值,
∵S△ACB= ×4×3=6,
∴x= 時,四邊形ABDC的面積最大,
此時D點(diǎn)坐標(biāo)為( ,﹣ );
(4)解:∵OB=OC=3,
∴△OBC為等腰直角三角形,
∴∠OCB=∠OBC=45°,
當(dāng)∠CBQ=90°時,BQ交y軸于G點(diǎn),如圖(3),則∠OBG=45°,
∴OG=OB=3,則G(0,3),
易得直線BG的解析式為y=﹣x+3,
解方程組 得 或 ,
∴Q(﹣2,5);
當(dāng)∠BCQ=90°時,CQ交x軸于H點(diǎn),如圖(3),
則∠OCH=45°,
∴OH=OC=3,則H(﹣3,0),
易得直線CH的解析式為y=﹣x﹣3,
解方程組 得 或 ,
∴Q(1,﹣2);
綜上所述,點(diǎn)Q坐標(biāo)為(1,﹣2)或(2,5)時,使△BCQ是以BC為直角邊的直角三角形.
【解析】解:(1)把C(0,﹣3)代入y=x2﹣2x+k得k=﹣3,
則拋物線解析式為y=x2﹣2x﹣3,
當(dāng)y=0時,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0);
所以答案是﹣3,(﹣1,0),(3,0);
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,坐標(biāo)為,點(diǎn)B在x軸的負(fù)半軸上,坐標(biāo)為,同時滿足,連接AB,且AB=10.點(diǎn)D是x軸正半軸上的一個動點(diǎn),點(diǎn)E是線段AB上的一個動點(diǎn),連接DE.
(1)求A、B兩點(diǎn)坐標(biāo);
(2)若,點(diǎn)D的橫坐標(biāo)為x,線段的長為d,請用含x的式子表示d;
(3)若,AF、DF分別平分∠BAO、∠BDE,相交于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年1月20日,山西迎來了“復(fù)興號”列車,與“和諧號”相比,“復(fù)興號”列車時速更快,安全性更好.已知“太原南﹣北京西”全程大約500千米,“復(fù)興號”G92次列車平均每小時比某列“和諧號”列車多行駛40千米,其行駛時間是該列“和諧號”列車行駛時間的(兩列車中途停留時間均除外).經(jīng)查詢,“復(fù)興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐“復(fù)興號”G92次列車從太原南到北京西需要多長時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點(diǎn)A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)直接寫出點(diǎn)C,D的坐標(biāo),求出四邊形ABDC的面積;
(2)在x軸上是否存在一點(diǎn)F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是:( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點(diǎn);
②過M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
③將△ADE繞點(diǎn)E順時針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.
(1)請?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當(dāng)∠B為多少度時,四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=
解決下列問題:
(1)若min{2,2x+2,4﹣2x}=2,則x的范圍__________;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;
②根據(jù)①,你發(fā)現(xiàn)了結(jié)論“如果M{a,b,c}=min{a,b,c},那么__________(填a,b,c的大小關(guān)系)”.
③運(yùn)用②的結(jié)論,若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},求x+y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com