【題目】如圖⊙O是△ABC的外接圓,圓心O在這個三角形的高AD上,AB=10,BC=12,求⊙O的半徑.

【答案】解:如圖,連接OB.

∵AD是△ABC的高.

∴BD= BC=6

在Rt△ABD中,AD= = =8.

設(shè)圓的半徑是R.

則OD=8﹣R.

在Rt△OBD中,根據(jù)勾股定理可以得到:R2=36+(8﹣R)2

解得:R=


【解析】連接OB,根據(jù)垂經(jīng)定理求出BD的長,在Rt△ABD中由勾股定理求得AD=8,設(shè)圓的半徑是R,則OD=8-R,在Rt△OBD中由勾股定理可求得R的值.解答此題的關(guān)鍵是作出輔助線OB.注意:垂徑定理和勾股定理常常在一起中應(yīng)用.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某機械廠甲、乙兩個生產(chǎn)車間承擔生產(chǎn)同一種零件的任務(wù),甲、乙兩車間共有人,甲車間平均每人每天生產(chǎn)零件個.乙車間平均每人每天生產(chǎn)零件個,甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和為個.

1)求甲、乙兩車間各有多少人?

2)該機械廠改進了生產(chǎn)技術(shù).在甲、乙兩車間總?cè)藬?shù)不變的情況下,從甲車間調(diào)出一部分人到乙車間.調(diào)整后甲車間平均每人每天生產(chǎn)零件個,乙車間平均每人每天生產(chǎn)零件個,若甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和不少于個,求從甲車間最多調(diào)出多少人到乙車間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖所示的方式疊放在一起,兩直角頂點重合于點O.

(1)求∠AOD+BOC的度數(shù);

(2)AB的中點E恰好落在CD的中垂線上時,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點,與y軸交于點C(0,﹣3).

(1)k= , 點A的坐標為 , 點B的坐標為;


(2)設(shè)拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求出點Q坐標,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,,,,,,……

(1)請你據(jù)此推測出的個位數(shù)字是幾?

(2)利用上面的結(jié)論,求的個位數(shù)字.

(3)的個位數(shù)字又是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人去水果批發(fā)市場采購獼猴桃,他看中了AB兩家獼猴桃.這兩家獼猴桃品質(zhì)一樣,零售價都為6元/千克,批發(fā)價各不相同,

A家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量不超過2000千克,按零售價的90%優(yōu)惠;超過2000千克的按零售價的88%優(yōu)惠.

B家的規(guī)定如下表:

數(shù)量范圍

(千克)

0500

500以上~1500

1500以上~2500

2500以上

價格(元)

零售價的95%

零售價的85%

零售價的75%

零售價的70%

1)如果他批發(fā)600千克獼猴桃,則他在A B兩家批發(fā)分別需要多少元?

2)如果他批發(fā)x千克獼猴桃(1500x2000),請你分別用含x的代數(shù)式表示他在A、B兩家批發(fā)所需的費用;

3)現(xiàn)在他要批發(fā)1800千克獼猴桃,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某紙品加工廠利用邊角料裁出正方形和長方形兩種硬紙片,長方形的寬與正方形的邊長相等(如圖2),再將它們制作成甲乙兩種無蓋的長方體小盒(如圖1).現(xiàn)將300張長方形硬紙片和150張正方形硬紙片全部用于制作這兩種小盒,可以做成甲乙兩種小盒各多少個?(注:圖1中向上的一面無蓋)

查看答案和解析>>

同步練習冊答案