精英家教網 > 初中數學 > 題目詳情

【題目】如圖是某路燈在鉛垂面內的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=求燈桿AB的長度.

【答案】燈桿AB的長度為2米.

【解析】過點BBFCE,交CE于點F,過點AAGAF,交BF于點G,則FG=AC=11.設BF=3xEF=4x、DF=,由DE=18求得x=4,據此知BG=BF-GF=1,再求得∠BAG=BAC-CAG=30°可得AB=2BG=2.

過點BBFCE,交CE于點F,過點AAGAF,交BF于點G,則FG=AC=11.

由題意得∠BDE=α,tanβ=

BF=3x,則EF=4x

RtBDF中,∵tanBDF=,

DF=,

DE=18,

x+4x=18.

x=4.

BF=12,

BG=BF-GF=12-11=1,

∵∠BAC=120°,

∴∠BAG=BAC-CAG=120°-90°=30°.

AB=2BG=2,

答:燈桿AB的長度為2米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】湖田十月清霜墮,晚稻初香蟹如虎,又到了食蟹的好季節(jié)啦!某經銷商去水產批發(fā)市場采購牟山湖大閘蟹,他看中了兩家的某種品質相近的大閘蟹.零售價都為80/千克,批發(fā)價各不相同.

家規(guī)定:批發(fā)數量不超過100千克,按零售價的92%優(yōu)惠;批發(fā)數量超過100千克但不超過200千克,按零售價的90%優(yōu)惠;超過200千克的按零售價的88%優(yōu)惠.

B家的規(guī)定如下表:

數量范圍(千克)

0-50部分

50以上-150的部分

150以上-250的部分

250以上的部分

價格(元)

零售價的95%

零售價的85%

零售價的75%

零售價的70%

1)如果他批發(fā)70千克牟山湖大閘蟹,則他在兩家批發(fā)分別需要多少元;

2)如果他批發(fā)千克牟山湖大閘蟹(),請你分別用含字母的式子表示他在兩家批發(fā)所需的費用;

3)現在他要批發(fā)180千克山湖大閘蟹,你能幫助他選擇哪家批發(fā)更便宜嗎.請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個小立方體的六個面分別標有字母AB、C、D、E、F,從三個不同方向看到的情形如圖.

1A對面的字母是_____,B對面的字母是_____,E對面的字母是_____.(請直接填寫答案)

2)若A2x1B=﹣3x+9,C=﹣5,D1E4x+5,F9,且字母A與它對面的字母表示的數互為相反數,求BE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是一個長寬高分別為6,4,3的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體表面到長方體上和A處相對的頂點B處吃食物,那么它需要爬行的最短路徑長為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中C點坐標為(1,2).

1)寫出點A,B的坐標:A )、B );

2)判斷△ABC的形狀 ;計算△ABC的面積是 .

3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到,則的三個頂點坐標分別是 ), ), .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校學生會決定從三名學生會干事中選拔一名干事,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績如下表所示:

測試項目

測試成績/

筆試

75

80

90

面試

93

70

68

根據錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率(沒有棄權,每位同學只能推薦1人)如扇形統(tǒng)計圖所示,每得一票記1分.

1)扇形統(tǒng)計圖中= , 分別計算三人民主評議的得分;

2)根據實際需要,學校將筆試、面試、民主評議三項得分按433的比例確定個人成績,得分最高者將被選中,通過計算說明三人中誰被選中?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),C→B→A的路徑,以2cm每秒的速度運動,設運動時間為t.

(1) t=1時,求△ACP的面積

(2) t為何值時,線段AP是∠CAB的平分線?

(3) 請利用備用圖2繼續(xù)探索:當t為何值時,△ACP是以AC為腰的等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結DC

(1)圖2中的全等三角形是_______________,并給予證明(說明:結論中不得含有未標識的字母);

2)指出線段DC和線段BE的關系,并說明理由.

查看答案和解析>>

同步練習冊答案