如下圖(1),已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到新正方形A2B2C2D2(如圖(2));以此下去,則正方形的面積為         

試題分析:根據(jù)三角形的面積公式,知每一次延長(zhǎng)一倍后,得到的一個(gè)直角三角形的面積和延長(zhǎng)前的正方形的面積相等,即每一次延長(zhǎng)一倍后,得到的圖形是延長(zhǎng)前的正方形的面積的5倍,從而解答.
如圖(1),已知小正方形ABCD的面積為1,則把它的各邊延長(zhǎng)一倍后,三角形AA1B1的面積是1,新正方形A1B1C1D1的面積是5,從而正方形A2B2C2D2的面積為5×5=25,正方形AnBnCnDn的面積為5n
點(diǎn)評(píng):解答此類問題的關(guān)鍵是仔細(xì)分析所給圖形的特征得到規(guī)律,再把這個(gè)規(guī)律應(yīng)用于解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,AB=4a,E是BC的中點(diǎn),BE=2a,∠BAD=120°,P是BD上的動(dòng)點(diǎn),則PE+PC的最小值為              .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,,AB=DC。點(diǎn)E,F(xiàn),G分別在邊AB,BC,CD上,AE=GF=GC。

(1)求證:四邊形AEFG是平行四邊形;
(2)當(dāng)時(shí),求證:四邊形AEFG是矩形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,矩形的邊,,它的兩條對(duì)角線交于點(diǎn),以為鄰邊作平行四邊形,平行四邊形的對(duì)角線交于點(diǎn),同樣以為鄰邊作平行四邊形,……,依次類推,平行四邊形的面積為           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

寫出下列命題的已知、求證,并完成證明過程.

命題:如果平行四邊形的一條對(duì)角線平分它的一個(gè)內(nèi)角,那么這個(gè)平行四邊形是菱形.
已知:如圖,                
求證:                  
證明:                             

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,AD∥BC,∠ABC=90o,AB=BC,點(diǎn)E是AB上的點(diǎn),∠ECD=45o,連接ED,過D作DF⊥BC于F.

(1)若∠BEC=75o,F(xiàn)C=4,求梯形ABCD的周長(zhǎng)。(4分)
(2)求證:ED=BE+FC.(6分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在□ABCD中,E是對(duì)角線AC的中點(diǎn),EF⊥AD于F,∠B=60°,AB=4,∠ACB=45°,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在四邊形ABCD中,AD//BC.沿直線AD翻折四邊形ABCD后可得四邊形ADC′B′,那么四邊形BCC′B′一定是
 
A.正方形       B.菱形        C.矩形         D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案