在△ABC中,∠C=90°,AC=4cm,BC=5cm,點D在BC上,并且CD=3cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動,過點P作PE∥BC交AD于點E,連結(jié)EQ.設(shè)動點運動時間為x秒。
(1)用含x的代數(shù)式表示AE、DE的長度;
(2)當點Q在BD(不包括點B、D)上移動時,設(shè)△EDQ的面積為y(cm2),求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當x為何值時,△EDQ為直角三角形。
解:(1)在Rt△ADC中,∵AC=4,CD=3, 
                ∴AD=5, ∵EP∥DC, ∴△AEP∽△ADC  
       ;
     (2)∵BC=5,CD=3,∴BD=2
                 當點Q在BD上運動x秒后,DQ=2-1.25x
                 則
            即y與x的函數(shù)解析式為:
           其中自變量的取值范圍是:0<x<1.6
(3)分兩種情況討論:
          ①當∠EQD=90°時, ∴EQ=PC=4-x,
              ∵EQ∥AC ∴△EDQ∽△ADC
         
         
       ②當∠QED=90°時, ∵∠CDA=∠EDQ,∠QED=∠C=90°
            ∴△EDQ∽△CDA
            ∴
          即
        
   上所述,當x為2.5秒或3.1秒時,△EDQ為直角三角形。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習冊答案