【題目】如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點,拋物線y=ax2+bx-3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關(guān)于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.
【答案】(1)y=-x2-2x+3,頂點C的坐標(biāo)為(-1,4);(2)證明見解析.
【解析】
(1)解:∵y=x+3與坐標(biāo)軸分別交與A,B兩點,∴A點坐標(biāo)(-3,0)、B點坐標(biāo)(0,3).
∵拋物線y=ax2+bx-3a經(jīng)過A,B兩點,
∴
解得
∴拋物線解析式為:y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4,
∴頂點C的坐標(biāo)為(-1,4).
(2)證明:∵B,D關(guān)于MN對稱,C(-1,4),B(0,3),
∴D(-2,3).∵B(0,3),A(-3,0),∴OA=OB.
又∠AOB=90°,∴∠ABO=∠BAO=45°.
∵B,D關(guān)于MN對稱,∴BD⊥MN.
又∵MN⊥x軸,∴BD∥x軸.
∴∠DBA=∠BAO=45°.
∴∠DBO=∠DBA+∠ABO=45°+45°=90°.
設(shè)直線BC的解析式為y=kx+b,
把B(0,3),C(-1,4)代入得,
解得
∴y=-x+3.
當(dāng)y=0時,-x+3=0,x=3,∴E(3,0).
∴OB=OE,又∵∠BOE=90°,
∴∠OEB=∠OBE=∠BAO=45°.
∴∠ABE=180°-∠BAE-∠BEA=90°.
∴∠ABC=180°-∠ABE=90°.
∴∠CBD=∠ABC-∠ABD=45°.
∵CM⊥BD,∴∠MCB=45°.
∵B,D關(guān)于MN對稱,
∴∠CDM=∠CBD=45°,CD∥AB.
又∵AD與BC不平行,∴四邊形ABCD是梯形.
∵∠ABC=90°,∴四邊形ABCD是直角梯形.
【題型】解答題
【結(jié)束】
21
【題目】有兩組卡片,第一組三張卡片上都寫著A、B、B,第二組五張卡片上都寫著A、B、B、D、E.試用列表法求出從每組卡片中各抽取一張,兩張都是B的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海上巡邏船在A地巡航,這時接到B地海上指揮中心緊急通知:在指揮中心北偏西60°向的C地,有一艘漁船遇險,要求馬上前去救援.此時C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為16海里.求A、C兩地之間的距離.(保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)一元二次方程的根的情況是( )
A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根
C.沒有實數(shù)根 D.無法確定
【答案】A.
【解析】
試題∵△=,∴方程有兩個不相等的實數(shù)根.故選A.
考點:根的判別式.
【題型】單選題
【結(jié)束】
9
【題目】已知直線y=kx(k>0)與雙曲線交于點A(x1,y1),B(x2,y2)兩點,則x1y2+x2y1的值為【 】
A.﹣6 B.﹣9 C.0 D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點E在BC邊上,AE=AB,將線段AC繞A點旋轉(zhuǎn)到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點G.
(1)求證:EF=BC;
(2)若∠ABC=62°,∠ACB=29°,求∠FGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過點D作AC的平行線交AB于點O,DE⊥AD交AB于點E.
(1)求證:點O是AE的中點;
(2)若點F是AC邊上一點,且OF=OA,連接EF,如圖2,判斷EF與AC的位置關(guān)系,并說明理由;
(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假即將到來,外出旅游的人數(shù)逐漸增多,對旅行包的需求也將增多,某店準備到生產(chǎn)廠家購買旅行包,該廠有甲、乙兩種新型旅行包.若購進10個甲種旅行包和20個乙種旅行包共需5600元,若購進20個甲種旅行包和10個乙種旅行包共需5200元.
(1)甲、乙兩種旅行包的進價分別是多少元?
(2)若該店恰好用了7000元購買旅行包;
①設(shè)該店購買了m個甲種旅行包,求該店購買乙種旅行包的個數(shù);
②若該店將甲種旅行包的售價定為298元,乙種旅行包的售價定為325元,則當(dāng)該店怎么樣進貨,才能獲得最大利潤,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學(xué)生對四種項目的喜歡情況,隨機調(diào)查了該校m名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表
項目 | 學(xué)生數(shù)(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據(jù)圖表中提供的信息,解答下列問題:
(1)m= ,n= ,p= ;
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com