精英家教網 > 初中數學 > 題目詳情
14.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作AF∥BC,交CE的延長線于點F,且AF=BD,當AB與AC滿足什么條件時,四邊形AFBD是矩形?

分析 由AAS證明證明△AEF≌△DEC,得出AF=CD,證明四邊形AFBD是平行四邊形,再根據等腰三角形三線合一證明∠ADB=90°,進而根據有一個角是直角的平行四邊形是矩形得證.

解答 解:AB=AC,理由如下:
∵AF∥BC,
∴∠AFE=∠DCE,
∵E為AD的中點,
∴EA=ED,
在△AEF和△DEC中,$\left\{\begin{array}{l}{∠AFE=∠DCE}&{\;}\\{∠AEF=∠DEC}&{\;}\\{EA=ED}&{\;}\end{array}\right.$,
∴△AEF≌△DEC(ASA);
∴AF=CD,
∵AF=BD,AF∥BC,
∴四邊形AFBD是平行四邊形,BD=CD,
∵AB=AC,
∴AD⊥BD,
∴四邊形AFBD是矩形.

點評 本題考查了矩形的判定,三角形全等的判定及性質,平行四邊形的判定;能夠了解矩形的判定定理是解答本題的關鍵,難度不大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:選擇題

4.立方根等于2的數是(  )
A.4B.8C.±8D.$\root{3}{2}$

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

5.△ABC∽△DEF,且相似比為2:1,△ABC的面積為8,則△DEF的面積為(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2.解分式方程
(1)$\frac{2x}{x+2}$-$\frac{3}{x-2}$=2            
(2)$\frac{2x}{x-1}$+$\frac{3}{1-x}$=1.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

9.如圖,小紅和小蘭房間窗戶的裝飾物分別由一些半圓和四分之一圓組成(半徑分別相同).
(1)請用代數式分別表示小紅和小蘭房間窗戶能射進陽光部分的面積(窗框面積忽略不計);
(2)請通過計算說明,誰的窗戶能射進陽光部分的面積大?大多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.計算:
(1)($\sqrt{18}$-2$\sqrt{2}$)×$\sqrt{\frac{1}{12}}$
(2)$\sqrt{18}$-$\frac{2}{\sqrt{2}}$+|1-$\sqrt{2}$|+($\frac{1}{2}$)-1
(3)$\sqrt{8}$×($\sqrt{2}$-$\sqrt{\frac{1}{2}}$)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

6.從2008年起,每年10月15日世衛(wèi)組織設定為“全球洗手日”.某中學為了解學生衛(wèi)生習慣,隨機抽取了10名同學每天洗手次數,結果是6,3,4,6,6,3,5,6,4,5,那么這組數據的眾數是6.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

3.函數圖象y=ax2+(a-3)x+1與x軸只有一個交點,則a的值為0或1或9.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

4.在正方形ABCD的平面內作等邊三角形△ADE,則∠AEB的度數為75°.

查看答案和解析>>

同步練習冊答案