【題目】已知一組數(shù)據(jù)x1,x2,x3,x4的平均數(shù)是5,則數(shù)據(jù)x1+3,x2+3,x3+3,x4+3的平均數(shù)是

【答案】8

【解析】

試題分析:∵x1,x2,x3,x4的平均數(shù)為5

∴x1+x2+x3+x4=4×5=20,∴x1+3,x2+3,x3+3,x4+3的平均數(shù)為

=(x1+3+x2+3+x3+3+x4+3)÷4=(20+12)÷4=8,故答案為:8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【提出問題】

1)如圖1,在等邊ABC中,點MBC上的任意一點(不含端點BC),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點MBC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請說明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點MBC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(2,﹣4)在第   象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是等邊ABC內(nèi)一點,D是ABC外的一點,AOB=110°,BOC=αBOC≌△ADC,OCD=60°,連接OD.

(1)求證:OCD是等邊三角形;

(2)當(dāng)α=150°時,試判斷AOD的形狀,并說明理由;

(3)AOD能否為等邊三角形?為什么?

(4)探究:當(dāng)α為多少度時,AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形狀完全相同,每次任取3只,摸出至少有一只次品是 事件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為6cm,P為線段OA的中點,若點P在⊙O上,則OA的長( )
A.等于6cm
B.等于12cm
C.小于6cm
D.大于12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點橫坐標(biāo)是2,與軸交于A,0)、B,0),0,與軸交于點C,為坐標(biāo)原點,

1)求證:;

2)求、的值;

3)當(dāng)0且二次函數(shù)圖象與直線僅有一個交點時,求二次函數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,探討角平分線的作法時,李老師用直尺和圓規(guī)作角平分線,方法如下:

小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.

根據(jù)以上情境,解決下列問題:

李老師用尺規(guī)作角平分線時,用到的三角形全等的判定方法是_________.

小聰?shù)淖鞣ㄕ_嗎?請說明理由.

請你幫小穎設(shè)計用刻度尺作角平分線的方法.(要求:作出圖形,寫出作圖步驟,不予證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算機(jī)中常用的十六進(jìn)制是逢16進(jìn)l的計數(shù)制,采用數(shù)字0~9和字母A~F共16個計數(shù)符號。這些符號與十進(jìn)制數(shù)的對應(yīng)關(guān)系如下表:

十六進(jìn)制

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

十進(jìn)制

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

例如,用十六進(jìn)制表示:E+F=1D,則A×B=( )

A. B0 B. 1A C. 5F D. 6E

查看答案和解析>>

同步練習(xí)冊答案