【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,OA3,OC2,且BEAC,AEOB

1)求證:四邊形AEBD是菱形;

2)求經(jīng)過(guò)點(diǎn)E的雙曲線對(duì)應(yīng)的函數(shù)解析式;

3)設(shè)經(jīng)過(guò)點(diǎn)E的雙曲線與直線BE的另一交點(diǎn)為F,過(guò)點(diǎn)Fx軸的平行線,交經(jīng)過(guò)點(diǎn)B的雙曲線于點(diǎn)G,交y軸于點(diǎn)H,求△OFG的面積.

【答案】1)見(jiàn)解析;(2;(3

【解析】

1)先證明四邊形AEBD是平行四邊形,再證明DADB,即可得出結(jié)論;

2)求出點(diǎn)E的坐標(biāo),即可求解;

3)根據(jù)OFG的面積SSOHGSOHF,即可求解.

解:(1)證明:∵BEAC,AEOB,
∴四邊形AEBD是平行四邊形.
∵四邊形OABC是矩形,
DAAC,DBOB,AC=OB
DA=DB
∴平行四邊形AEBD是菱形.
2)如圖1,連接DE,交AB于點(diǎn)M,

∵四邊形AEBD是菱形,
ABDE互相垂直且平分.
OA=3,OC=2
EMDMOA,AMAB1
∴點(diǎn)E的坐標(biāo)為(1)
設(shè)經(jīng)過(guò)點(diǎn)E的反比例函數(shù)解析式為y,
把點(diǎn)E(,1)代得k,
∴雙曲線的函數(shù)解析式為y
3)設(shè)經(jīng)過(guò)點(diǎn)B的反比例函數(shù)解析式為y,
把點(diǎn)B32)代入得k1=6,
∴經(jīng)過(guò)點(diǎn)B的反比例函數(shù)解析式為y
∵直線FGx軸(如圖2),

OFG的面積S=SOHG-SOHF=|k1|-|k|=×6-×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠B=90°,BC=4,AB=8,點(diǎn)D是邊AC的中點(diǎn),動(dòng)點(diǎn)P在邊AB(點(diǎn)P不與點(diǎn)A重合),連接PD、PC,將△PDC沿直線PD翻折,點(diǎn)C落在點(diǎn)E處得△PDE

1)如圖①,若點(diǎn)E恰好與點(diǎn)A重合,求線段AP的長(zhǎng);

2)如圖②,若EDAB于點(diǎn)F,四邊形CDEP為菱形,求證:△PFE≌△AFD;

3)連接AE,設(shè)△PDE與△ABC重疊部分的面積為S1,△PAC的面積為S2,若S1=S2時(shí),請(qǐng)直接寫(xiě)出tanAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家銷(xiāo)售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷(xiāo)售40件,每銷(xiāo)售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月30天計(jì)算,這款商品將開(kāi)展每天降價(jià)1的促銷(xiāo)活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷(xiāo)售量增加2件,設(shè)第xx為整數(shù)的銷(xiāo)售量為y件.

直接寫(xiě)出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤(rùn)為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形和正方形的頂點(diǎn)在同一條直線上,頂點(diǎn)在同一條直線上.的中點(diǎn),的平分線過(guò)點(diǎn),交于點(diǎn)連接于點(diǎn)連接.以下四個(gè)結(jié)論:①;②;③;④,其中正確的結(jié)論是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)A11,0)作x軸的垂線,交直線y2x于點(diǎn)B1;點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對(duì)稱(chēng);過(guò)點(diǎn)A22,0)作x軸的垂線,交直線y2x于點(diǎn)B2;點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對(duì)稱(chēng);過(guò)點(diǎn)A340)作x軸的垂線,交直線y2x于點(diǎn)B3;…,按此規(guī)律作下去,則點(diǎn)B10的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于世界人口增長(zhǎng)、水污染以及水資源浪費(fèi)等原因,全世界面臨著淡水資源不足的問(wèn)題,我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門(mén)對(duì)某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下(單位):

6.7 8.7 7.3 11.4 7.0 6.9 11.7 9.7 10.0 9.7

7.3 8.4 10.6 8.7 7.2 8.7 10.5 9.3 8.4 8.7

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補(bǔ)充表格(表1):

用水量

人數(shù)

6

b

4

分析數(shù)據(jù):補(bǔ)全下列表格中的統(tǒng)計(jì)量(表2):

平均數(shù)

中位數(shù)

眾數(shù)

8.85

8.7

得出結(jié)論:

1)表中的 , , ;

2)若用表1中的數(shù)據(jù)制作一個(gè)扇形統(tǒng)計(jì)圖,所占的扇形圓心角的度數(shù)為 度;

3)如果該小區(qū)有住戶400戶,根據(jù)樣本估計(jì)用水量在的居民有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①,②,③,④,其中正確結(jié)論的個(gè)數(shù)為(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于點(diǎn)A(﹣1,4)和點(diǎn)B4,n).

1)求這兩個(gè)函數(shù)的解析式;

2)已知點(diǎn)M在線段AB上,連接OA,OB,OM,若SAOMSBOM,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在等腰直角中,斜邊

1)請(qǐng)你在圖邊上求作一點(diǎn),使得;

2)如圖,在(1)問(wèn)的條件下,將邊沿方向平移,使得點(diǎn)、、對(duì)應(yīng)點(diǎn)分別為、,連接,.若平移的距離為1,求的大小及此時(shí)四邊形的面積;

3)將邊沿方向平移個(gè)單位至,是否存在這樣的,使得在直線上有一點(diǎn),滿足,且此時(shí)四邊形的面積最大?若存在,求出四邊形面積的最大值及平移距離的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案