(2005•豐臺(tái)區(qū))如圖是一束平行的光線從教室窗戶射入教室的平面示意圖,測(cè)得光線與地面所成的角∠AMC=30°,窗戶的高在教室地面上的影長(zhǎng)MN=2米,窗戶的下檐到教室地面的距離BC=1米(點(diǎn)M、N、C在同一直線上),則窗戶的高AB為( )

A.
B.3米
C.2米
D.1.5米
【答案】分析:根據(jù)題意,AM∥BN,易證△NBC∽△MAC,再根據(jù)相似三角形的性質(zhì)解答即可.
解答:解:∵BN∥AM
∴∠AMC=∠BNC=30°
又∵∠C=90°,BC=1米
∴BN=2米,CN=
∴CN:CM=BC:AC

解得:AC=3米
∴AB=AC-BC=2米.
故選C.
點(diǎn)評(píng):本題只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程即可求出窗戶的高度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•豐臺(tái)區(qū))如圖,已知平面直角坐標(biāo)系中三點(diǎn)A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點(diǎn)作PC⊥PB交過點(diǎn)A的直線a于點(diǎn)C(2,y)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x取最大整數(shù)時(shí),求BC與PA的交點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•豐臺(tái)區(qū))在直角坐標(biāo)系中,⊙O1經(jīng)過坐標(biāo)原點(diǎn)O,分別與x軸正半軸、y軸正半軸交于點(diǎn)A、B.
(1)如圖,過點(diǎn)A作⊙O1的切線與y軸交于點(diǎn)C,點(diǎn)O到直線AB的距離為,sin∠ABC=,求直線AC的解析式;
(2)若⊙O1經(jīng)過點(diǎn)M(2,2),設(shè)△BOA的內(nèi)切圓的直徑為d,試判斷d+AB的值是否會(huì)發(fā)生變化?如果不變,求出其值;如果變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年北京市豐臺(tái)區(qū)中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•豐臺(tái)區(qū))在直角坐標(biāo)系中,⊙O1經(jīng)過坐標(biāo)原點(diǎn)O,分別與x軸正半軸、y軸正半軸交于點(diǎn)A、B.
(1)如圖,過點(diǎn)A作⊙O1的切線與y軸交于點(diǎn)C,點(diǎn)O到直線AB的距離為,sin∠ABC=,求直線AC的解析式;
(2)若⊙O1經(jīng)過點(diǎn)M(2,2),設(shè)△BOA的內(nèi)切圓的直徑為d,試判斷d+AB的值是否會(huì)發(fā)生變化?如果不變,求出其值;如果變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年北京市豐臺(tái)區(qū)中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•豐臺(tái)區(qū))如圖,已知平面直角坐標(biāo)系中三點(diǎn)A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點(diǎn)作PC⊥PB交過點(diǎn)A的直線a于點(diǎn)C(2,y)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x取最大整數(shù)時(shí),求BC與PA的交點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(03)(解析版) 題型:填空題

(2005•豐臺(tái)區(qū))為了調(diào)查某一路口某時(shí)段的汽車流量,交警記錄了一個(gè)星期同一時(shí)段通過該路口的汽車輛數(shù),記錄的情況如下表:

那么這一個(gè)星期在該時(shí)段通過該路口的汽車平均每天為    輛.

查看答案和解析>>

同步練習(xí)冊(cè)答案