如圖,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OA以cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開(kāi)始沿BO以2cm/s的速度向點(diǎn)O移動(dòng).如果P、Q、R分別從O、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O‘與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O‘相切?
(3)寫(xiě)出△PQR的面積S隨動(dòng)點(diǎn)移動(dòng)時(shí)間t的函數(shù)關(guān)系式,并求s的最小值及相應(yīng)的t值.
(4)是否存在△APQ為等腰三角形,若存在,求出相應(yīng)的t值,若不存在請(qǐng)說(shuō)明理由.
解:(1)在Rt△AOB中:
tan∠OAB=
∴∠OAB=30°
(2)如圖,連接O‘P,O‘M. 當(dāng)PM與⊙O‘相切時(shí),有∠PM O‘=∠PO O‘=90°,
△PM O‘≌△PO O‘
由(1)知∠OBA=60°
∵O‘M= O‘B
∴△O‘BM是等邊三角形
∴∠B O‘M=60°
可得∠O O‘P=∠M O‘P=60°
∴OP= O O‘·tan∠O O‘P
=6×tan60°=
又∵OP=t
∴t=,t=3
即:t=3時(shí),PM與⊙O‘相切.
(3)如圖9,過(guò)點(diǎn)Q作QE⊥x于點(diǎn)E
∵∠BAO=30°,AQ=4t
∴QE=AQ=2t
AE=AQ·cos∠OAB=4t×
∴OE=OA-AE=-t
∴Q點(diǎn)的坐標(biāo)為(-t,2t)
S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ
=
=
= ()
當(dāng)t=3時(shí),S△PQR最小=
(4)分三種情況:如圖11.
當(dāng)AP=AQ1=4t時(shí),
∵OP+AP=
∴t+4t=
∴t=
或化簡(jiǎn)為t=-18
當(dāng)PQ2=AQ2=4t時(shí)
過(guò)Q2點(diǎn)作Q2D⊥x軸于點(diǎn)D,
∴PA=2AD=2A Q2·cosA=t
即t+t =
∴t=2
當(dāng)PA=PQ3時(shí),過(guò)點(diǎn)P作PH⊥AB于點(diǎn)H
AH=PA·cos30°=(-t)·=18-3t
AQ3=2AH=36-6t
得36-6t=4t,
∴t=3.6
綜上所述,當(dāng)t=2,t=3.6,t=-18時(shí),△APQ是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
4 |
1 |
8 |
14 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
a+2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com