【題目】對于拋物線y=ax2﹣4ax+3a下列說法:①對稱軸為x=2;②拋物線與x軸兩交點的坐標分別為(1,0),(3,0);③頂點坐標為(2,﹣a);④若a<0,當x>2時,函數(shù)y隨x的增大而增大,其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個
【答案】B
【解析】解:對稱軸x=﹣ =﹣ =2,故①正確;
令y=0,得ax2﹣4ax+3a=0,解得x=1或3,
∴拋物線與x軸兩交點的坐標分別為(1,0),(3,0),故②正確;
= =﹣1,
∴頂點坐標為(2,﹣1),故③錯誤;
當a<0,當x<2時,函數(shù)y隨x的增大而增大,故④錯誤,
故選B.
【考點精析】通過靈活運用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC由△A′B′C′繞O點旋轉(zhuǎn)180°而得到,則下列結(jié)論不成立的是( )
A.點A與點A′是對應(yīng)點
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC與點O在10×10的網(wǎng)格中的位置如圖所示
(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.求證:AD=DG+MD;
(3)點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G.請在圖3中畫出圖形,并直接寫出ND,DG與AD數(shù)量之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣4x+1﹣p2=0.
(1)若p=2,求原方程的根;
(2)求證:無論p為何值,方程總有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D為邊AB的中點,DE∥BC,將△ABC沿線段DE折疊,使點A落在點F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)= ; (2)= ; (3) ;
(4) ; (5) ; (6)a3·a3= ;
(7) (x3)5= ; (8)(-2x2y3)3= ; (9) (x-y)6÷(x-y)3= ;
(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,AD=6cm,動點P、Q分別從A、C兩點同時出發(fā),點P以3cm/s的速度向點B移動,一直到達點B為止,點Q以2cm/s的速度向點D移動.
(1)P、Q兩點從出發(fā)開始,經(jīng)過幾秒時,四邊形PBCQ的面積為33cm2?
(2)P、Q兩點從出發(fā)開始,經(jīng)過幾秒時,點P和點Q的距離為10cm?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com