【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),過B的直線交拋物線于E,,且tan∠EBA=,有一只螞蟻從A出發(fā),先以1單位/s的速度爬到線段BE上的點(diǎn)D處,再以1.25單位/s的速度沿著DE爬到E點(diǎn)處覓食,則螞蟻從A到E的最短時(shí)間是________s
【答案】
【解析】過點(diǎn)E作EF∥AB,過點(diǎn)A作AH⊥EF于點(diǎn)H,交EF于點(diǎn)D,
易知A(-1,0),B(3,0),又,則,所以E(, ),
因?yàn)?/span>EF∥AB,所以∠DEH=∠ABE,所以,則,故.
螞蟻從A到H所用的時(shí)間t== .
因?yàn)?/span>AH=,所以t的最小值是.
點(diǎn)晴:本題是一個(gè)求最小時(shí)間的胡不歸問題,解題的關(guān)鍵是化=DH,一般的以目的地E為角的頂點(diǎn),以構(gòu)造直角三角形,得到直角邊EF,再過A作AH⊥EF交BE于點(diǎn)D,則可解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1反映了甲離開A地的時(shí)間與離A地的距離的關(guān)系l2反映了乙離開A地的時(shí)間與離開A地距離之間的關(guān)系,根據(jù)圖象填空:
(1)當(dāng)時(shí)間為0時(shí),甲離A地千米;
(2)當(dāng)時(shí)間為時(shí),甲、乙兩人離A地距離相等;
(3)圖中P點(diǎn)的坐標(biāo)是;
(4)l1對應(yīng)的函數(shù)表達(dá)式是:S1=;
(5)當(dāng)t=2時(shí),甲離A地的距離是千米;
(6)當(dāng)S=28時(shí),乙離開A地的時(shí)間是時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績,并制作了如下不完整的頻數(shù)分布表(圖1)和頻數(shù)分布直方圖(圖2).
請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= ,b= (2)請補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來描述成績分布情況,則分?jǐn)?shù)段70≤x<80對應(yīng)的圓心角的度數(shù)是 ;
(4)競賽成績不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機(jī)抽取2名同學(xué)接受電視臺(tái)記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列性質(zhì)中,平行四邊形不一定具有的是( )
A. 對邊相等 B. 對邊平行 C. 對角互補(bǔ) D. 內(nèi)角和為360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種藥品的原價(jià)是25元,經(jīng)過連續(xù)兩次降價(jià)后每盒16元,假設(shè)兩次降價(jià)的平均降價(jià)率相同,求平均降價(jià)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過A(-2, 0), C(0, 6)兩點(diǎn)的拋物線y=-x2+ax+b與x軸交于另一點(diǎn)B,點(diǎn)D是拋物線的頂點(diǎn).
(1)求a、b的值;
(2)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),過P作直線l//AC交拋物線于點(diǎn)Q.隨著點(diǎn)P的運(yùn)動(dòng),若以A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件的點(diǎn)Q的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)M,使△BDM的周長最小,若存在,請找出點(diǎn)M并求出點(diǎn)M的坐標(biāo).若不存在,請說明理由。
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是邊長3cm的等邊三角形.動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).
(1)如圖1,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△PBC是直角三角形;
(2)若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D.如果動(dòng)點(diǎn)P,Q都以1cm/s的速度同時(shí)出發(fā).
①如圖2,設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△DCQ是等腰三角形?
②如圖3,連接PC,請你猜想:在點(diǎn)P,Q的運(yùn)動(dòng)過程中,△PCD和△QCD的面積有什么關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com