【題目】已知a,b,c為三個(gè)不等于0的數(shù),且滿足abc>0,a+b+c<0,求 + + 的值.

【答案】解:∵abc>0,a+b+c<0,∴a,b,c一正兩負(fù),
+ + =1﹣1﹣1=﹣1
【解析】根據(jù)題意,由于abc>0,a+b+c<0,依據(jù)有理數(shù)加法和乘法法則求解即可.
【考點(diǎn)精析】本題主要考查了有理數(shù)的乘法法則和絕對(duì)值的相關(guān)知識(shí)點(diǎn),需要掌握有理數(shù)乘法法則:1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘2、任何數(shù)同零相乘都得零3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定;正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9的絕對(duì)值是(
A.9
B.﹣9
C.3
D.±3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),點(diǎn)C是線段AB的中點(diǎn),CDOBOBD,RtEFH的斜邊EH在射線AB上,頂點(diǎn)F在射線AB的左側(cè),EFOA,點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向B運(yùn)動(dòng),到點(diǎn)B停止,AE=EF,運(yùn)動(dòng)時(shí)間為ts).

(1)在RtEFH中,EF= ,EH= ,點(diǎn)F坐標(biāo)為( , )(用含t的代數(shù)式表示)

(2)t為何值時(shí),HC重合?

(3)設(shè)EFHCDB重疊部分圖形的面積為S(S>0),求St的函數(shù)關(guān)系式。

(4)在整個(gè)運(yùn)動(dòng)過程中,RtEFH掃過的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明三角形中最多有一個(gè)直角或鈍角”,第一步應(yīng)假設(shè)(  )

A. 三角形中至少有一個(gè)直角或鈍角

B. 三角形中至少有兩個(gè)直角或鈍角

C. 三角形中沒有直角或鈍角

D. 三角形中三個(gè)角都是直角或鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個(gè)圓柱形的餅干盒,在盒子外側(cè)下底面的點(diǎn)A處有甲、乙兩只螞蟻,它們都想要吃到上底面外側(cè)B′處的食物:甲螞蟻沿A→A′→B′的折線爬行,乙螞蟻沿圓柱的側(cè)面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都與圓柱的中軸線OO′平行),圓柱的底面半徑是12cm,高為1cm,則:

(1)A′B′=cm,甲螞蟻要吃到食物需爬行的路程長(zhǎng)l1=cm;
(2)乙螞蟻要吃到食物需爬行的最短路程長(zhǎng)l2=cm(π取3);
(3)若兩只螞蟻同時(shí)出發(fā),且爬行速度相同,在乙螞蟻采取最佳策略的前提下,哪只螞蟻先到達(dá)食物處?請(qǐng)你通過計(jì)算或合理的估算說明理由.(參考數(shù)據(jù):π取3, ≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列各題.
(1)﹣4÷ ﹣(﹣ )×(﹣30)
(2)﹣20+(﹣14)﹣(﹣18)﹣13
(3)﹣22+|5﹣8|+24÷(﹣3)×
(4)(﹣125 )÷(﹣5)﹣2.5÷ ×(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項(xiàng)式xm1y3與4xyn的和是單項(xiàng)式,則mn的值是(
A.3
B.6
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),過B的直線交拋物線于E,,且tanEBA=,有一只螞蟻從A出發(fā),先以1單位/s的速度爬到線段BE上的點(diǎn)D處,再以1.25單位/s的速度沿著DE爬到E點(diǎn)處覓食,則螞蟻從AE的最短時(shí)間是________s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的兩邊長(zhǎng)分別為47,第三邊長(zhǎng)是方程x27x+12=0的解,則第三邊的長(zhǎng)為( 。

A. 3B. 4C. 34D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案