【題目】如圖,在⊙O中,AB是直徑,點(diǎn)C是 的中點(diǎn),點(diǎn)P是 的中點(diǎn),則∠PAB的度數(shù)(

A.30°
B.25°
C.22.5°
D.不能確定

【答案】C
【解析】解:連接OC、OP,如圖所示.
∵AB是直徑,點(diǎn)C是 的中點(diǎn),點(diǎn)P是 的中點(diǎn),
∴∠POB= × ×180°=45°,
∴∠PAB= ∠POB=22.5°.
故選C.

【考點(diǎn)精析】本題主要考查了圓心角、弧、弦的關(guān)系和圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長(zhǎng)為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是(

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC△ECD都是等邊三角形

(1)如圖1,若B、C、D三點(diǎn)在一條直線上,求證:BE=AD;

(2)保持△ABC不動(dòng),將△ECD繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使∠ACE=90°(如圖2),BCDE有怎樣的位置關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°,AC平分∠BAD,CEABCFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.點(diǎn)PA點(diǎn)出發(fā),沿路徑向終點(diǎn)B運(yùn)動(dòng),點(diǎn)QB點(diǎn)出發(fā),沿路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P Q分別的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過點(diǎn)PQPElE,QFlF.則點(diǎn)P運(yùn)動(dòng)多少秒時(shí),△PEC和△CFQ全等?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“今天你光盤了嗎?”這是國(guó)家倡導(dǎo)“厲行節(jié)約,反對(duì)浪費(fèi)”以來的時(shí)尚流行語.某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對(duì)他們進(jìn)行了關(guān)于“光盤行動(dòng)”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對(duì)稱軸是x=1,有以下四個(gè)結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案