已知兩點均在拋物線上,點是該拋物線的頂點,若,則的取值范圍是【   】
A.B.C.D.
B。
∵點是該拋物線的頂點,且,
為函數(shù)的最小值!鄴佄锞的開口向上。
,∴點A、B可能在對稱軸的兩側(cè)或者是在對稱軸的左側(cè)。
當在對稱軸的左側(cè)時,∵y隨x的增大而減小,∴;
當在對稱軸的兩側(cè)時,∵點B距離對稱軸的距離小于點A到對稱軸的距離,
,解得
綜上所得:。故選B。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標為(2,0)

(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最?若存在,求出點D的坐標,若不存在,請說明理由;
(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,頂點為(3,4)的拋物線交 y軸與A點,交x軸與B、C兩點(點B在點C的左側(cè)),已知A點坐標為(0,-5).

(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線與點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D。

(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向下平移m個單位(m>0)得拋物線C3,C3的頂點為G,與y軸交于M。點N是M關(guān)于x軸的對稱點,點P()在直線MG上。問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6),將△BCD沿BD折疊(D點在OC邊上),使C點落在DA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.

(1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
(2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線經(jīng)過B,H, D三點,求拋物線解析式;
(3)點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B, D點),過點P作PN⊥BC,分別交BC 和 BD于點N, M,是否存在這樣的點P,使如果存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù),則此二次函數(shù)(   )
A.有最大值1B.有最小值1C.有最大值-3D.有最小值-3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一次函數(shù)、二次函數(shù)和反比例函數(shù)在同一直角坐標系中圖象如圖,A點為(-2,0)。則下列結(jié)論中,正確的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系xOy中,若動點P在拋物線y=ax2上,⊙P恒過點F(0,n),且與直線y=﹣n始終保持相切,則n=   (用含a的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案