【題目】計算題:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(-+)×36]÷5 (4)99×(-36)
【答案】(1)5;(2)-10;(3)4;(4)-3599.5
【解析】
(1)利用有理數(shù)的加減混合運算法則求解即可;
(2)利用有理數(shù)的加減混合運算法則求解即可;
(3)利用有理數(shù)的混合運算順序和乘法分配律求解即可;
(4)根據(jù)乘法分配律解答本題;
(1)(-78) +(+5)+(+78)
原式=-78+5-78
=5;
(2)(+23)+(-17)+(+6)+(-22)
原式=23-17+6-22
=-10
(3)[45-(-+)×36]÷5
原式=(45-28+33-30)÷5
=20÷5
=4
(4)99×(-36)
原式=(100-)×(-36)
=-3600+0.5
=-3599.5
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù)6,
(1)A、B兩點之間的距離等于_________;
(2)在數(shù)軸上有一個動點,它表示的數(shù)是,則的最小值是_________;
(3)若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)是_________;
(4)若在原點的左邊2個單位處放一擋板,一小球甲從點處以5個單位/秒的速度向右運動;同時另一小球乙從點處以2個單位/秒的速度向左運動,在碰到擋板后(忽略球的大小,可看作一點)兩球分別以原來的速度向相反的方向運動,設(shè)運動時間為秒,請用來表示甲、乙兩小球之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是正方形ABCD外一點,且DE=CE=,連接AE.
(1)將△ADE繞點D逆時針旋轉(zhuǎn)90°,作出旋轉(zhuǎn)后的圖形.
(2)如果∠AED=15°,判斷△DEC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了獎勵優(yōu)秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.
(1)每副乒乓球拍和羽毛球拍的單價各是多少元?
(2)若學校購買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,有一個長方形被分割成了6個大小不同的正方形,其中最小正方形的邊長是3,則該長方形長是___________;將同一個長方形作如圖2分割,分割成左上角的長方形G、右下角的長方形H以及7張長寬相同的小長方形M(小長方形M如圖3所示),當長方形G與長方形H的周長相等時,小長方形M的寬是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【探索發(fā)現(xiàn)】
如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
【拓展應(yīng)用】
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)
【靈活應(yīng)用】
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
【實際應(yīng)用】
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某星期六上午,小明從家出發(fā)跑步去公園,在公園停留了一會兒打車回家.圖中折線表 示小明離開家的路程y(米)和所用時間x(分)之間的函數(shù)關(guān)系,則下列說法中錯誤的是( )
A.小明在公園休息了5分鐘
B.小明乘出租車用了17分
C.小明跑步的速度為180米/分
D.出租車的平均速度是900米/分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O是直線AB上的一點,∠COE=90°,OF是∠AOE的平分線.
(1)當點C,E,F(xiàn)在直線AB的同側(cè)時(如圖①所示),試說明∠BOE=2∠COF.
(2)當點C與點E,F(xiàn)在直線AB的兩側(cè)時(如圖②所示),(1)中的結(jié)論是否仍然成立?請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某中學初二年級抽取部分學生進行跳繩測試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘跳100~109次的為中等;每分鐘跳110~119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測試的共有 人;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“中等”部分所對應(yīng)的圓心角的度數(shù)是 ;
(4)如果該校初二年級的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計數(shù)據(jù),請你估算該校初二年級跳繩成績?yōu)?/span>“優(yōu)秀”的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com