【題目】在△ABC中,AB=AC,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)若∠BAC=40°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF.
【答案】(1)25°;(2)證明見解析.
【解析】
(1)已知AB=AC,△ACE是等腰直角三角形,可得AB=AE;再由等腰三角形的性質(zhì)可得∠ABE=∠AEB,由已知條件求出∠BAE的度數(shù),再根據(jù)三角形內(nèi)角和定理即可求出∠AEB的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,根據(jù)SAS推出△BAF≌△CAF,根據(jù)全等得出∠ABF=∠ACF,即可證得結(jié)論.
(1) ∵AB=AC,△ACE是等腰直角三角形,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAC=40°,∠EAC=90°,
∴∠BAE=40°+90°=130°,
∴∠AEB=(180°-130°)÷2=25°.
(2)證明:∵AB=AC,D是BC的中點,
∴∠BAF=∠CAF.
在△BAF和△CAF中
∴△BAF≌△CAF(SAS),
∴∠ABF=∠ACF,
∵∠ABE=∠AEB,
∴∠AEB=∠ACF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會主席換屆選舉,經(jīng)初選、復(fù)選后,共有甲,乙,丙三人進(jìn)入最后的競選,最后決定用投票方式進(jìn)行選舉,共發(fā)出1800張選票,得票數(shù)最高者為當(dāng)選人,且廢票不計入任何一位候選人的得票數(shù)內(nèi),全校設(shè)有四個投票箱,目前第一、第二、第三投票箱已開完所有選票,剩下第四投票箱尚未開票,結(jié)果如表所示:單位:票
投票箱 | 候選人 | 廢票 | 合計 | ||
甲 | 乙 | 丙 | |||
一 | 200 | 211 | 147 | 12 | 570 |
二 | 244 | 15 | 630 | ||
三 | 97 | 41 | 205 | 7 | 350 |
四 | 250 |
若第二投票箱候選人甲的得票數(shù)比乙的3倍還多31票,請分別求出第二投票箱甲、乙兩名候選人的得票數(shù).
根據(jù)題的數(shù)據(jù)分析,請判斷乙侯選人是否還有機(jī)會當(dāng)選,并詳細(xì)解釋或完整寫出你的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場對某種商品進(jìn)行銷售,第x天的銷售單價為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如表:
銷售第x天 | 第1天 | 第2天 | 第3天 | 第4天 | … | 第30天 |
銷售單價m(元/件) | 49 | 48 | 47 | 46 | … | 20 |
日銷售量n(件) | 45 | 50 | 55 | 60 | … | 190 |
(1)觀察表中數(shù)據(jù),分別直接寫出m與x,n與x的函數(shù)關(guān)系式: , ;
(2)求商場銷售該商品第幾天時該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請問:在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時該商品的日銷售額最多?商場決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場可捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個足球的質(zhì)量以400克為標(biāo)準(zhǔn),用正數(shù)記超過標(biāo)準(zhǔn)質(zhì)量的克數(shù),用負(fù)數(shù)記不足標(biāo)準(zhǔn)質(zhì)量的克數(shù)下面是5個足球的質(zhì)量檢測結(jié)果單位:克:,,,,.
寫出這5個足球的質(zhì)量;
請指出選用哪一個足球好些,并用絕對值的知識進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點A的對應(yīng)點分別為A1、A2,請寫出點A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點,△ABC經(jīng)旋轉(zhuǎn)、平移后點P的對應(yīng)點分別為P1,P2,請寫出點P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)學(xué)生的身體健康,某中學(xué)課桌椅的高度都是按一定的關(guān)系(一次函數(shù))配套設(shè)計的,下表列出5套符合條件的課桌椅的高度. ①假設(shè)課桌的高度為ycm椅子的高度為xcm,請確定y與x的函數(shù)關(guān)系式;②現(xiàn)有一把高37cm的椅子和一張高71.5cm的課桌,它們是否配套?為什么?
椅子高度x(cm) | 45 | 42 | 39 | 36 | 33 |
桌子高度y(cm) | 84 | 79 | 74 | 69 | 64 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點A(0,6)的直線AB與直線OC相交于點C(2,4)動點P沿路線O→C→B運(yùn)動.(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時,求出這時點P的坐標(biāo);(3)是否存在點P,使△OBP是直角三角形?若存在,直接寫出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當(dāng)|PA﹣PB|最大時,點P的坐標(biāo)為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖①,圖形l外一點P與圖形l上各點連接的所有線段中,若線段PA1最短,則線段PA1的長度稱為點P到圖形l的距離.
例如:圖②中,線段P1A的長度是點P1到線段AB的距離;線段P2H的長度是點P2到線段AB的距離.
解決問題:
如圖③,平面直角坐標(biāo)系xOy中,點A、B的坐標(biāo)分別為(8,4),(12,7),點P從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運(yùn)動了t秒.
(1)當(dāng)t=4時,求點P到線段AB的距離;
(2)t為何值時,點P到線段AB的距離為5?
(3)t滿足什么條件時,點P到線段AB的距離不超過6?(直接寫出此小題的結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com