【題目】某校八年級學生在學習《數(shù)據(jù)的分析》后,進行了檢測,現(xiàn)將該校八(1)班學生的成績統(tǒng)計如下表,并繪制成條形統(tǒng)計圖(不完整).
分數(shù)(分) | 人數(shù)(人) |
68 | 4 |
78 | 7 |
80 | 3 |
88 | 5 |
90 | 10 |
96 | 6 |
100 | 5 |
(1)補全條形統(tǒng)計圖;
(2)該班學生成績的平均數(shù)為86.85分,寫出該班學生成績的中位數(shù)和眾數(shù);
(3)該校八年級共有學生500名,估計有多少學生的成績在96分以上(含96分)?
(4)小明的成績?yōu)?8分,他的成績?nèi)绾,為什么?/span>
【答案】
(1)解:如圖,
(2)解:共有40個數(shù)據(jù),第20個數(shù)和第21個數(shù)都為90,所以該班學生成績的中位數(shù)為90分,
90出現(xiàn)的次數(shù)最多,所以眾數(shù)為90分
(3)解:500× ≈138,
所以估計有138名學生的成績在96分以上(含96分)
(4)解:小明的成績?yōu)?8分,他的成績中游偏下,因為全班的中位數(shù)為90分
【解析】(1)由統(tǒng)計表得96分的人數(shù)為6人,然后補全條形統(tǒng)計圖;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)用500乘以樣本中96分以上(含96分)的人數(shù)所占的百分比即可;(4)把它的成績與中位數(shù)比較可判斷他的成績?nèi)绾危?/span>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點.其中正確的命題序號是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關系式(寫出自變量x的取值范圍);
(3)當兩車相距120千米時,乙車行駛了多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的文字,然后解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用﹣1表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
由此我們還可以得到一個真命題:如果=x+y,其中x是整數(shù),且0<y<1,那么x=1,y=﹣1.
請解答下列問題:
(1)如果=a+b,其中a是整數(shù),且0<b<1,那么a= ,b= ;
(2)已知2+=m+n,其中m是整數(shù),且0<n<1,求|m﹣n|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F
(1)當△PMN所放位置如圖①所示時,則∠PFD與∠AEM的數(shù)量關系為 ;
(2)當△PMN所放位置如圖②所示時,求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=30°,∠PEB=15°,求∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1、l2相交于點A(2,3),直線l1與x軸交點B的坐標為(﹣1,0),直線l2與y軸交于點C,已知直線l2的解析式為y=2.5x﹣2,結合圖象解答下列問題:
(1)求直線l1的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點.過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中△BCE繞點B旋轉,當A,B,E三點在同一直線上時(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉到圖3的位置時,(2)中的結論是否仍然成立?若成立,試證明之;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com