唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為______
【答案】
分析:(1)根據(jù)軸對稱中最短路線問題,可以得出AC的長即為BP+AP的最小值,利用三角函數(shù)關系求出即可;
(2)根據(jù)軸對稱中最短路線問題,得出BP′+AP′=BP′+A′P′=A′B,即A′B是BP+AP的最小值,求出即可;
(3)運用待定系數(shù)法求二次函數(shù)解析式,再求出直線與坐標軸的交點坐標,當AM+CM取最小值時,△ACM周長最小值,求出AM+CM最小值,即可得出.
解答:解:(1)∵在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,
∴∠DAC=∠DCA=30°,
∴∠ACB=30°,
∴∠BAC=90°,
∴tan∠ACB=
,
∴AC=
=
,
故答案為:2
;
(2)如圖,作點A關于MN的對稱點A′,則A′在⊙O上,
連接BA′交MN于P′點,此時BP′+AP′最。
由對稱性可知AP′=A′P′,
∴BP′+AP′=BP′+A′P′=A′B,
連接OA、OB、OA′,
可知弧AN=弧A′N,
則∠NOA′=∠NOA=2∠M=60°,
而點B為弧AN中點,
∴∠BON=30°
∴∠BOA′=90°
而MN=1,
∴在Rt△OA′B中,A′B=
即BP+AP的最小值
.
(3)①∵拋物線y=ax
2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、
C(0,-3)兩點,分別代入二次函數(shù)解析式得:
∴
,
解得:a=1,b=-2,c=-3,
∴二次函數(shù)解析式為:y=x
2-2x-3,
②得到直線BC:y=x-3,
∴M(1,-2),AC的長為:
,
∴△ACM周長最小值即是:AM+CM最小時的值,
∵AM+CM=BC=3
,
∴△ACM周長最小值為:
.
點評:此題主要考查了軸對稱中最短路線問題以及圓周角定理和二次函數(shù)解析式的求法等知識,題目綜合性較強,利用軸對稱求最小值問題,是近幾年中考中熱點問題,應該引起同學們的注意.