【題目】已知:正方形ABCD,E為平面內(nèi)任意一點,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到DG,連接EC,AG.
(1)當(dāng)點E在正方形ABCD內(nèi)部時, ①根依題意,在圖1中補全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點B,D,G在一條直線時,若AD=4,DG=2 ,求CE的長.(可在備用圖中畫圖)
【答案】
(1)解:當(dāng)點E在正方形ABCD內(nèi)部時,
①根依題意,補全圖形如圖1:
②AG=CE,AG⊥CE.
理由:
在正方形ABCD,
∴AD=CD,∠ADC=90°,
∵由DE繞著點D順時針旋轉(zhuǎn)90°得DG,
∴∠GDE=∠ADC=90°,GD=DE,
∴∠GDA=∠EDC
在△AGD和△CED中, ,
∴△AGD≌△CED,
∴AG=CE.
延長CE分別交AG、AD于點F、H,
由①中結(jié)論△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°,
∴AG⊥CE.
(2)解:①當(dāng)點G在線段BD的延長線上時,如圖3所示.
過G作GM⊥AD于M.
∵BD是正方形ABCD的對角線,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=2
∴MD=MG=2,
∴AM=AD+DM=6
在Rt△AMG中,由勾股定理,得
AG= =2 ,
∴CE=AG=2
②當(dāng)點G在線段BD上時,如圖4所示,
過G作GM⊥AD于M.
∵BD是正方形ABCD的對角線,
∴∠ADG=45°
∵GM⊥AD,DG=2
∴MD=MG=2,
∴AM=AD﹣MG=2
在Rt△AMG中,由勾股定理,得
AG= =2
∴CE=AG=2
故CE的長為2 或2 .
【解析】(1)①根據(jù)題意補全圖形,
②先判斷出∠GDA=∠EDC,進而得出△AGD≌△CED,即可得出AG=CE,最后判斷出∠AFH=∠HDC=90°即可得出結(jié)論;(2)分兩種情況,①當(dāng)點G在線段BD的延長線上時和②當(dāng)點G在線段BD上時,構(gòu)造直角三角形利用勾股定理即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解圖形的旋轉(zhuǎn)的相關(guān)知識,掌握每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)關(guān)系中,不能看做二次函數(shù)y=ax2+bx+c(a≠0)模型的是( )
A. 圓的半徑和其面積的變化關(guān)系
B. 我國人口年自然增長率x,兩年中從12億增加到y億的x與y的變化關(guān)系
C. 擲鉛球水平距離與高度的關(guān)系
D. 面積一定的三角形底邊與高的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中是必然事件的是( )
A.擲一枚硬幣,正面朝上B.某運動員跳高的最好成績是20.1米
C.太陽從東方升起D.從車間剛生產(chǎn)的產(chǎn)品中任意抽取一件是次品
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲船和乙船分別從A港和C港同時出發(fā),各沿圖中箭頭所指的方向航行(如圖所示).現(xiàn)已知甲、乙兩船的速度分別是16海里/時和12海里/時,且A,C兩港之間的距離為10海里.問:經(jīng)過多長時間,甲船和乙船之間的距離最短?最短距離為多少?(注:題中的“距離”都是指直線距離,圖中AC⊥CB.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于點P(x,y),規(guī)定x+y=a,那么就把a叫點P的親和數(shù).例如:若P(2,3),則2+3=5,那么5叫P的親和數(shù).
(1)在平面直角坐標系中,已知,點A(﹣2,6) ①B(1,3),C(3,2),D(2,2),與點A的親和數(shù)相等的點;
②若點E在直線y=x+6上,且與點A的親和數(shù)相同,則點E的坐標是;
(2)如圖點P是矩形GHMN邊上的任意點,且點H(2,3),N(﹣2,﹣3),點Q是直線y=﹣x+b上的任意點,若存在兩點P、Q的親和數(shù)相同,那么求b的取值范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,不能構(gòu)成直角三角形的是( ).
A. 3,4,5 B. 6,8,10 C. 4,5,6 D. 5,12,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠XOY=90°,點A,B分別在射線OX,OY上移動.BE是
∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,則∠ACB的
大小是否變化?如果保持不變,請說明原因;如果隨點A,B的移動而發(fā)生變化,求
出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AD上一點,∠AOC與∠AOB互補,OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請說明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com