【題目】如圖,在直角三角形ABC中,直角邊,,設(shè)P、Q分別為AB,BC上的動(dòng)點(diǎn),點(diǎn)P自點(diǎn)A沿AB方向向點(diǎn)B作勻速移動(dòng)且速度為每秒2cm,同時(shí)點(diǎn)Q自點(diǎn)B沿BC方向向點(diǎn)C作勻速移動(dòng)且速度為每秒1cm,當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí),Q點(diǎn)就停止移動(dòng).設(shè)P,Q移動(dòng)的時(shí)間t秒.
(1)寫出的面積S()與時(shí)間t(s)之間的函數(shù)表達(dá)式,并寫出t的取值范圍.
(2)當(dāng)t為何值時(shí),為等腰三角形?
【答案】(1);(2)當(dāng)t或或時(shí),為等腰三角形.
【解析】
(1)過(guò)點(diǎn)P作PH⊥BC,垂足為H,從而得到△BPH∽△ABC,根據(jù)相似比例求出PH的長(zhǎng),然后表示出三角形PBQ的面積即可;
(2)需要分BP=BQ,BQ=PQ和BP=PQ三種情況討論三角形PBQ為等腰三角形,即最后分別求值即可.
(1)如圖1,過(guò)點(diǎn)P作PH⊥BC,垂足為H,
∵Rt△ABC中直角邊AC=6,BC=8
∴由勾股定理可得AB=10,
∴BP=10-2t,BQ=t.
∵AC⊥C B
∴△BPH∽△ABC,
∴ 即,解得;
∴
(2)①當(dāng)BP=BQ時(shí),10-2t=t,解得t= 秒;
②如圖2,當(dāng)BQ=PQ時(shí),作QE⊥BD,垂足為E,
∵BQ=PO,QE⊥BD,
∴
∵∠B=∠B, ∠ACB=∠QEB,
∴△BQE∽△BAC
∴,即,即得:t= 秒;
③如圖3,當(dāng)BP=PQ時(shí),作PF⊥BC,垂足為F
∵BP=PQ,PF⊥BC,
∴
∵
∴△BPF∽△BAC,
∴,即:,解得:t=秒
綜上:當(dāng)或或時(shí),為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,DA為⊙O的切線,切點(diǎn)為A,過(guò)⊙O上的點(diǎn)C作CD∥AB交AD于點(diǎn)D,連接BC、AC.
(1)如圖①,若DC為⊙O的切線,切點(diǎn)為C,求∠ACD和∠DAC的大。
(2)如圖②,當(dāng)CD為⊙O的割線且與⊙O交于點(diǎn)E時(shí),連接AE,若∠EAD=30°,求∠ACD和∠DAC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問(wèn)題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC、BC為直徑作半圓,其中M,N分別是AC、BC為直徑作半圓弧的中點(diǎn),,的中點(diǎn)分別是P,Q.若MP+NQ=7,AC+BC=26,則AB的長(zhǎng)是( 。
A.17B.18C.19D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作交BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE.
(1)當(dāng)時(shí),
①若,求的度數(shù);
②求證;
(2)當(dāng),時(shí),
①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);
②以D為端點(diǎn)過(guò)P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)(x>0)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長(zhǎng)CA,交以A為圓心,AB為半徑的圓弧于點(diǎn)D;延長(zhǎng)BA,交以A為圓心,AC為半徑的圓弧于點(diǎn)E.直線DE分別交x,y軸于點(diǎn)P,Q,當(dāng)QE:DP=4:9時(shí),圖中陰影部分的面積等于____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-2,與x軸的一個(gè)交點(diǎn)在(-3,0)和(-4,0)之間,其部分圖象如圖所示.則下列結(jié)論:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則y1<y2<y3.其中正確結(jié)論的個(gè)數(shù)是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,則稱點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn).
(1)如圖1,點(diǎn).
①若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為________;
②若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則的值為_______;
③若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為__________;
(2)如圖2,的半徑為1.若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直績(jī):的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,的取值范圍是________;
(3)是軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),且點(diǎn)在軸上,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn),B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)(k>0,x>0)的圖象經(jīng)過(guò)AC的中點(diǎn)D,則k的值為( )
A.8B.5C.6D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com