【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別是O0,0),A3,0),B4,4),C(-23),將點(diǎn)O,A,B,C的橫坐標(biāo)、縱坐標(biāo)都乘以-2.

(1)畫(huà)出以變化后的四個(gè)點(diǎn)為頂點(diǎn)的四邊形;

(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.

【答案】(1)答案見(jiàn)解析 (2)位似,O0,0),2

【解析】

1)將點(diǎn)OA,B,C的橫坐標(biāo)、縱坐標(biāo)都乘以-2O0,0),A′-6,0),B′-8-8),C′4-6),順次連接各點(diǎn)即可;1

2)根據(jù)位似圖形的定義可知得到的四邊形與四邊形OABC位似,根據(jù)圖形可得出位似中心及位似比.

1)解:如圖所示,四邊形OA′B′C′即為所求四邊形;

2)解:∵將點(diǎn)OA,B, C的橫坐標(biāo)、縱坐標(biāo)都乘以-2可得出四邊形OA′B′C′,

∴各對(duì)應(yīng)邊的比為2,對(duì)應(yīng)點(diǎn)的連線都過(guò)原點(diǎn),

∴得到的四邊形與四邊形OABC位似,位似中心是O00),與原圖形的相似比為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求解體驗(yàn):

1)已知拋物線 y=﹣x2+bx3 經(jīng)過(guò)點(diǎn)(﹣10),則 b ,頂點(diǎn)坐標(biāo)為 ,該拋物線關(guān)于點(diǎn)(0,1)成中心對(duì)稱(chēng)的拋物線表達(dá)式是

抽象感悟:

我們定義:對(duì)于拋物線 yax2+bx+ca≠0),以 y 軸上的點(diǎn) M0,m)為中心,作該拋物線關(guān)于點(diǎn) M 對(duì)稱(chēng)的 拋物線 y′,則我們又稱(chēng)拋物線 y′為拋物線 y 衍生拋物線,點(diǎn) M 衍生中心

2)已知拋物線 y=﹣x22x+5 關(guān)于點(diǎn)(0,m)的衍生拋物線為 y′,若這兩條拋物線有交點(diǎn),求 m 的取值范 圍.

問(wèn)題解決:

3)已知拋物線 yax2+2axba≠0

①若拋物線 y 的衍生拋物線為 y′bx22bx+a2b≠0),兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求 a、b 的值及衍生中心的坐標(biāo);

②若拋物線 y 關(guān)于點(diǎn)(0,k+12)的衍生拋物線為 y1,其頂點(diǎn)為 A1;關(guān)于點(diǎn)(0k+22)的衍生拋物線為 y2,其頂點(diǎn)為 A2;;關(guān)于點(diǎn)(0,k+n2)的衍生拋物線為 yn,其頂點(diǎn)為 Ann 為正整數(shù)).求 An An+1 的長(zhǎng)(用含 n 的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ab是任意兩個(gè)實(shí)數(shù),用max{a,b}表示a、b兩數(shù)中較大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,參照上面的材料,解答下列問(wèn)題:

1max{5,2}= ,max{03}= ;

2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范圍;

3)求函數(shù)y=﹣x+2的圖象的交點(diǎn)坐標(biāo),函數(shù)的圖象如圖所示,請(qǐng)你在圖中作出函數(shù)y=﹣x+2的圖象,并根據(jù)圖象直接寫(xiě)出max{﹣x+2,}的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2+bx3經(jīng)過(guò)點(diǎn)AB,C,已知點(diǎn)A(﹣1,0),點(diǎn)B3,0

1)求拋物線的解析式

2)點(diǎn)D為拋物線的頂點(diǎn),DEx軸于點(diǎn)E,點(diǎn)N是線段DE上一動(dòng)點(diǎn)

①當(dāng)點(diǎn)N在何處時(shí),△CAN的周長(zhǎng)最小?

②若點(diǎn)Mm0)是x軸上一個(gè)動(dòng)點(diǎn),且∠MNC90°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BCD和∠ABC的平分線分別交ADE,G兩點(diǎn),CE,BG相交于點(diǎn)O

(1)求證:AG=DE.

(2)已知AB=4AD=5,

①求的值.

②求四邊形ABOE的面積與△BOC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( 。

A. 60B. 50C. 40D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連結(jié)AG,EC.

(1)說(shuō)出AGCE的大小關(guān)系;

(2)圖中是否存在通過(guò)旋轉(zhuǎn)能夠相互重合的兩個(gè)三角形?若存在,請(qǐng)?jiān)敿?xì)寫(xiě)出旋轉(zhuǎn)過(guò)程;若不存在,請(qǐng)說(shuō)明理由.

(3)請(qǐng)你延長(zhǎng)AGCE于點(diǎn)M,判斷AMCE的位置關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,在BC邊上取一點(diǎn)P,在AC邊上取一點(diǎn)D,連APPD,如果APD是等腰三角形且ABPCDP相似,我們稱(chēng)APDAC邊上的等腰鄰相似三角形”.

(1)如圖2,ABCAB=AC,B=50°,APDAB邊上的等腰鄰相似三角形,且AD=DP,∠PAC=BPD,則∠PAC的度數(shù)是___;

(2)如圖3,在ABC中,∠A=2C,在AC邊上至少存在一個(gè)等腰鄰相似APD”,請(qǐng)畫(huà)出一個(gè)AC邊上的等腰鄰相似APD”,并說(shuō)明理由;

(3)如圖4,在RtABCAB=AC=2,APDAB邊上的等腰鄰相似三角形,請(qǐng)寫(xiě)出AD長(zhǎng)度的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請(qǐng)根據(jù)排列規(guī)律完成下列問(wèn)題:

1)填寫(xiě)下表:

圖形序號(hào)

菱形個(gè)數(shù)個(gè)

3

7

______

______

2)根據(jù)表中規(guī)律猜想,n中菱形的個(gè)數(shù)用含n的式子表示,不用說(shuō)理;

3)是否存在一個(gè)圖形恰好由91個(gè)菱形組成?若存在,求出圖形的序號(hào);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案