【題目】如圖,一副含30°45°角的三角板ABCEDF拼合在個平面上,邊ACEF重合,AC=12cm.當點E從點A出發(fā)沿AC方向滑動時,點F同時從點C出發(fā)沿射線BC方向滑動.當點E從點A滑動到點C時,點D運動的路徑長為__cm;連接BD,則△ABD的面積最大值為___cm2

【答案】; .

【解析】

先判定點D在∠ACF的平分線上,由題意可知點D運動的軌跡是D-D-D,求出DD′的長,即可求出點D運動的路徑長;由題意知,當運動到DEAC時,△ABD的面積最大,用割補法求解即可.

如圖,作DGACG,DHBCH,

∵∠EDG=90°-GDF,∠HDF=90°-GDF,

∴∠GDE=HDF,

又∵∠DGE=DHF,DE=DF,

∴△DGE≌△DHF

DG=DH,

∴點D在∠ACF的平分線上.

AC=12,

CD=cos45°×AC=6.

當運動到DEAC時,此時四邊形CFDE是正方形,

CDEF12,

DD′=12-6.,

∴點D運動的路徑長為212-6=cm;

由題意知,當運動到DEAC時,△ABD的面積最大,

BC=tan30°×AC=6.

SABD=SABC+S梯形ACFD-SADF

=

=.

故答案為:(1). ; (2). .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=8cm,如圖①,點E,H從點A開始向B,D運動,同時點F,G從點CB,D運動,運動速度都為1cm/秒,運動時間為t秒(0≤t<8.

1)當運動時間t=4時,求證:四邊形EFGH為矩形;

2)當t等于多少秒時,四邊形EFGH面積是菱形ABCD面積的

3)如圖②,連接HF,BG,當t等于多少秒時,HFBG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OAx軸上,邊OBy軸上,點D在邊CB上,反比例函數(shù)k0)在第一象限的圖象經(jīng)過點E,若正方形AOBC和正方形CDEF的面積之差為6,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個木箱中裝有卡片共50張,這些卡片共有三種,它們分別標有1、23的字樣,除此之外其他都相同,其中標有數(shù)字2卡片的張數(shù)是標有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機摸出一張標有數(shù)字1卡片的概率是

1)求木箱中裝有標1的卡片張數(shù);

2)求從箱子中隨機摸出一張標有數(shù)字3的卡片的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBCABAC,E是邊BC上的點,且∠AED=∠CAD,DEAC于點F

1)求證:ABE∽△DAF;

2)當ACFCAEEC時,求證:ADBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標;

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、PQ三點共線,求此時P點坐標及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,直線DC,DA分別切⊙O于點C,點A,連結(jié)BC,OD

(1)求證:BCOD

(2)若∠ODC36°AB6,求出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,ABCABC成中心對稱的是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案