如圖,拋物線y1=-
3
4
x2+3與x軸交于A、B兩點,與直線y2=-
3
4
x+b相交于B、C兩點.
(1)求直線BC的解析式和點C的坐標(biāo);
(2)若對于相同的x,兩個函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是
-1≤x≤2
-1≤x≤2
分析:(1)令y=0求解得到點B的坐標(biāo),把點B的坐標(biāo)代入直線解析式求出b的值,再與直線聯(lián)立求解得到點C的坐標(biāo);
(2)根據(jù)函數(shù)圖象找出拋物線在直線上方部分的x的取值范圍即可.
解答:解:(1)令y=0,則-
3
4
x2+3=0,
解得x1=-2,x2=2,
∴點B的坐標(biāo)為(2,0),
∴-
3
4
×2+b=0,
解得b=
3
2

∴直線BC的解析式為y=-
3
4
x+
3
2

由-
3
4
x2+3=-
3
4
x+
3
2
,即3x2-x-6=0,
解得x1=-1,x2=2(舍去),
∴點C的坐標(biāo)為(-1,
9
4
);

(2)由圖可知,y1≥y2時,-1≤x≤2.
故答案為:-1≤x≤2.
點評:本題考查了二次函數(shù)與不等式,待定系數(shù)法求一次函數(shù)解析式,拋物線與x軸的交點問題,利用數(shù)形結(jié)合的思想求解是此類題目解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,則圖中陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=a(x-m)2與y2關(guān)于y軸對稱,頂點分別為B、A,y1與y軸的交點為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關(guān)系式;
(2)如圖,動點Q、M分別在y1和y2上,N、P在x軸上,構(gòu)成矩形MNPQ,當(dāng)a為1時,請問:
①Q(mào)點坐標(biāo)是多少時,矩形MNPQ的周長最短?
②若E為MQ與y軸的交點,是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請直接寫出Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,拋物線y1=x2-1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標(biāo)及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=ax2+bx和直線y2=kx+m相交于點(-2,0)和(1,3),則當(dāng)y2<y1,時,x的取值范圍是
x>1或x<-2
x>1或x<-2

查看答案和解析>>

同步練習(xí)冊答案