【題目】如圖,直角△ABC中,∠B=30°,點O是△ABC的重心,連接CO并延長交AB于點E,過點E作EF⊥AB交BC于點F,連接AF交CE于點M,則 的值為( )
A.
B.
C.
D.
【答案】D
【解析】解:∵點O是△ABC的重心,
∴OC= CE,
∵△ABC是直角三角形,
∴CE=BE=AE,
∵∠B=30°,
∴∠FAE=∠B=30°,∠BAC=60°,
∴∠FAE=∠CAF=30°,△ACE是等邊三角形,
∴CM= CE,
∴OM= CE﹣ CE= CE,即OM= AE,
∵BE=AE,
∴EF= AE,
∵EF⊥AB,
∴∠AFE=60°,
∴∠FEM=30°,
∴MF= EF,
∴MF= AE,
∴ = = .
故選:D.
【考點精析】認(rèn)真審題,首先需要了解相似三角形的判定與性質(zhì)(相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABD和△CEF都是斜邊為2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直線上,DC=4.
(1)求證:四邊形ABFE是平行四邊形.
(2)△ABD沿著BE的方向以每秒1cm的速度運動,設(shè)△ABD運動的時間為t秒,
①當(dāng)t為何值時,ABFE是菱形?請說明你的理由.
②ABFE有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸、y軸上,反比例函數(shù)y= (x>0)的圖像經(jīng)過點D,且與邊BC交于點E,則點E的坐標(biāo)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD、CE是△ABC的兩條中線,P是AD上一個動點,則下列線段的長度等于BP+EP最小值的是( )
A.BC
B.CE
C.AD
D.AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A4紙復(fù)印文件,在甲復(fù)印店不管一次復(fù)印多少頁,每頁收費0.1元.在乙復(fù)印店復(fù)印同樣的文件,一次復(fù)印頁數(shù)不超過20時,每頁收費0.12元;一次復(fù)印頁數(shù)超過20時,超過部分每頁收費0.09元. 設(shè)在同一家復(fù)印店一次復(fù)印文件的頁數(shù)為x(x為非負(fù)整數(shù)).
(1)根據(jù)題意,填寫下表:
一次復(fù)印頁數(shù)(頁) | 5 | 10 | 20 | 30 | … |
甲復(fù)印店收費(元) | 0.5 | 2 | … | ||
乙復(fù)印店收費(元) | 0.6 | 2.4 | … |
(2)設(shè)在甲復(fù)印店復(fù)印收費y1元,在乙復(fù)印店復(fù)印收費y2元,分別寫出y1 , y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)x>70時,顧客在哪家復(fù)印店復(fù)印花費少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺大型收割機(jī)和3臺小型收割機(jī)1小時可以收割小麥1.4公頃,2臺大型收割機(jī)和5臺小型收割機(jī)1小時可以收割小麥2.5公頃.
(1)每臺大型收割機(jī)和每臺小型收割機(jī)1小時收割小麥各多少公頃?
(2)大型收割機(jī)每小時費用為300元,小型收割機(jī)每小時費用為200元,兩種型號的收割機(jī)一共有10臺,要求2小時完成8公頃小麥的收割任務(wù),且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應(yīng)的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“閱讀季”活動,小明調(diào)查了班級里40名同學(xué)計劃購書的花費情況,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖,根據(jù)圖中相關(guān)信息,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.12和10
B.30和50
C.10和12
D.50和30.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com