【題目】1)閱讀理解:

如圖①,在ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;

(2)問題解決: 如圖②,在ABC,DBC邊上的中點(diǎn),DEDF于點(diǎn)D,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問題拓展:如圖③,在四邊形ABCD,B+D=180°,CB=CD,C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,ADE、F兩點(diǎn),連接EF,EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.

【答案】11AD4;(2)證明見解析;(3)∠A+2ECF=180°,理由見解析.

【解析】

1)延長ADE,使DE=AD,連接BE,證△ADC≌△EDB,推出EB=AC,根據(jù)三角形的三邊關(guān)系求出即可;

2)先利用ASA判定△BGD≌△CFD,從而得出BG=CF;再利用全等的性質(zhì)可得GD=FD,再有DEGF,從而得出EG=EF,兩邊和大于第三邊從而得出BE+CFEF;

3)延長EBG,使BG=DF,連接CG,通過SAS證明△CDF△CBG,得到CG=CF,∠BCG=DCF,再證明△CEF△CEG,得到∠ECF=EDG,由∠A+∠BCD=180°,通過等量代換即可得到∠A+2∠ECF=180°.

1)延長ADE,使AD=DE,連接BE,

AD是△ABC的中線,

BD=CD

在△ADC與△EDB中,

∴△ADC≌△EDBSAS),

EB=AC

AB=5,AC=3

根據(jù)三角形的三邊關(guān)系得:AB-ACAEAC+AB,

2AE8,

AE=2AD

1AD4

即:BC邊上的中線AD的取值范圍1AD4,

故答案為:1AD4

2)過點(diǎn)BBGACFD的延長線于G,連接EG,

∴∠DBG=DCF

DBC的中點(diǎn),

BD=CD,

又∵∠BDG=CDF,

∴△BGD≌△CFDASA).

GD=FD,BG=CF,

又∵DEDF,

EG=EF(垂直平分線到線段端點(diǎn)的距離相等).

∴在△EBG中,BE+BGEG,

BE+CFEF;

3∠A+2∠ECF=180°,理由如下:

延長EBG,使BG=DF,連接CG

∠D+ABC=180°,∠ABC+∠CBG=180°,

∴∠D=∠CBG,

又∵CD=CB,DF=BG

∴△CDF△CBG,

CF=CG∠DCF=∠BCG,

∵EF=DF+BEEG=BE+BG,DF=BG

EF=EG,

∵EC=EC,

△CEF≌△CEG,

∴∠ECF=∠ECG,

∵∠BCD=∠DCF+∠BCF

∴∠BCD=∠BCF+∠BCG=∠FCG=∠ECF+∠ECG=2∠ECF,

∵∠D+∠A+∠ABC+∠BCD=360°∠D+∠ABC=180°,

∴∠A+∠BCD=180°

∠A+2∠ECF=180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=6cm,AC=8cm,以斜邊BC上距離B點(diǎn)6cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)三角形重疊部分的面積是_______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=kx+b 經(jīng)過點(diǎn)A(﹣,0)和點(diǎn)B(2,5)

(1)求直線l1y軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C(a,a+2)與點(diǎn)D在直線l1上,過點(diǎn)D的直線l2x軸正半軸交于點(diǎn) E,當(dāng)AC=CD=CE 時(shí),求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°,BEAD于點(diǎn)E,且四邊形ABCD的面積為144,則BE________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1,若OCBA,AOC=36°,則( 。

A. 點(diǎn)BAO的距離為sin54°

B. 點(diǎn)AOC的距離為sin36°sin54°

C. 點(diǎn)BAO的距離為tan36°

D. 點(diǎn)AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請(qǐng)你根據(jù)所學(xué)的知識(shí)解決下面問題

1)求網(wǎng)格圖中ABC的面積

2)判斷ABC是什么形狀?并所明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.

(1)請(qǐng)直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷ABC的形狀,并說明理由;

(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo);

(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,于點(diǎn)D,,DGBC于點(diǎn)G,點(diǎn)EBC的延長線上,且

1)求的度數(shù);

2)寫出圖中所有等腰三角形(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形ABC邊長為a,等腰三角形BDC中,∠BDC120,∠MDN60,角的兩邊分別交AB,AC于點(diǎn)MN,連結(jié)MN.則AMN的周長為( )

A.aB.2aC.3aD.4a

查看答案和解析>>

同步練習(xí)冊(cè)答案