【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( 。
A. ①②③④ B. ②③ C. ①②④ D. ①③④
【答案】C
【解析】試題分析:∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正確;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正確;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD與△PDB不會(huì)相似;故③錯(cuò)誤;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PHPC,故④正確;
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎和小亮上山游玩,小顆乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小顆在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米。圖中的折線表示小亮在整個(gè)行走過(guò)程中y隨x的變化關(guān)系.
(1)小亮行走的總路程是_________米,他途中休息了___________分;
(2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;
(3)當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的面積是60,請(qǐng)完成下列問(wèn)題:
(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積________△ACD的面積(填“>”“<”或“=”)
(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO , 同理:S△CEO=S△AEO , 設(shè)S△ADO=x,S△CEO=y,則S△BDO=x,S△AEO=y由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為: , 解得,通過(guò)解這個(gè)方程組可得四邊形ADOE的面積為________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)數(shù)的絕對(duì)值除以這個(gè)數(shù)所得的商是-1,則這個(gè)數(shù)一定是( )
A.-1B.1或-1C.負(fù)數(shù)D.正數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如: , .
(1)仿照以上方法計(jì)算: = ; = .
(2)若=1,寫(xiě)出滿足題意的x的整數(shù)值 .
如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次 ,這時(shí)候結(jié)果為1.
(3)對(duì)100連續(xù)求根整數(shù), 次之后結(jié)果為1.
(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,DE=3.
求:(1)⊙O的半徑;(2)弦AC的長(zhǎng);(3)陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多項(xiàng)式 3a2+2a-6 是______次______項(xiàng)式,其中常數(shù)項(xiàng)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com