【題目】已知,如圖,在△ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點D、E,若DE=8,則線段BD+CE的長為

A. 5B. 6C. 7D. 8

【答案】D

【解析】

根據(jù)角平分線的性質(zhì),可得∠DBO=∠OBC,∠ECO=∠OCB,根據(jù)兩直線平行,可得∠DOB=∠OBC,∠EOC=∠OCB,根據(jù)等角對等邊,可得BDDO,EOEC,可得答案.

解:OBOC分別平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB

DEBC,

∴∠OBC=∠DOB,∠EOC=∠OCB

∴∠DBO=∠DOB,∠EOC=∠ECO

DBDO,EOEC

BD+CEDOEODE8,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù)點表示數(shù),點表示數(shù),且滿足

1 , ,

2)若將數(shù)軸折疊,使得點與點重合,則點與表示 的數(shù)的點重合;

3)點以每秒3個單位長度的速度從點向右運動.點以每秒2個單位長度的速度從點向右運動(點、點同時出發(fā)),經(jīng)過幾秒,點、點分別到點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BCAB,BD=8.給出以下判斷:

AC垂直平分BD;

四邊形ABCD的面積S=ACBD;

順次連接四邊形ABCD的四邊中點得到的四邊形可能是正方形;

當A,B,C,D四點在同一個圓上時,該圓的半徑為;

ABD沿直線BD對折,點A落在點E處,連接BE并延長交CD于點F,當BFCD時,點F到直線AB的距離為

其中正確的是_____.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:

天數(shù)(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=

設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.

(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:

(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?

(3)任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新定義:對于關(guān)于x的一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y=為一次函數(shù)y=kx+b(k≠0)m變函數(shù)(其中m為常數(shù)).

例如:對于關(guān)于x的一次函數(shù)y=x+43變函數(shù)為y=

(1)關(guān)于x的一次函數(shù)y=-x+12變函數(shù)為,則當x=4時,= ;

(2)關(guān)于x的一次函數(shù)y=x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=-x-2-1變函數(shù)為,求函數(shù)和函數(shù)的交點坐標;

(3)關(guān)于x的一次函數(shù)y=2x+21變函數(shù)為,關(guān)于x的一次函數(shù)y=x-1,的m變函數(shù)為.

①當-3≤x≤3時,函數(shù)的取值范圍是 (直接寫出答案):

②若函數(shù)和函數(shù)有且僅有兩個交點,則m的取值范圍是 (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聲音在空氣中傳播的速度簡稱音速,實驗測得音速與氣溫的一些數(shù)據(jù)如下表:

下列結(jié)論錯誤的是(

A.在這個變化中,氣溫是自變量,音速是因變量

B.yx的增大而增大

C.當氣溫為30°C時,音速為350/

D.溫度每升高5°C,音速增加3/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC,BD交于點0,過點0的直線分別交邊AD,BC于點E,F(xiàn),EF=6.則AE2+BF2的值為(

A. 9 B. 16 C. 18 D. 36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若點P為四邊形ABCD內(nèi)一點,且滿足∠APB+CPD=180°, 則稱點P為四邊形ABCD的一個互補點”.

(1)如圖1,點P為四邊形ABCD的一個互補點”,APD=63°,求∠BPC的度數(shù).

(2)如圖2,點P是菱形ABCD對角線上的任意一點.求證:點P為菱形ABCD的一個互補點”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】建設銀行的某儲蓄員小張在辦理業(yè)務時,約定存入為正,取出為負. 20191029日,他先后辦理了七筆業(yè)務: +2000元、-800元、+400元、-800元、+1400元、-1700元、-200.

1)若他早上領(lǐng)取備用金4000元,那么下班時應交回銀行_________元錢.

2)請判斷在這七次辦理業(yè)務中,小張在第_______次業(yè)務辦理后手中現(xiàn)金最多,第_________次業(yè)務辦理后手中現(xiàn)金最少.

3)若每辦一件業(yè)務,銀行發(fā)給業(yè)務量的0.2%作為獎勵,小張這天應得獎金多少元?

4)若記小張第一次辦理業(yè)務前的現(xiàn)金為0點,用折線統(tǒng)計圖表示這7次業(yè)務辦理中小張手中現(xiàn)金的變化情況.

查看答案和解析>>

同步練習冊答案