【題目】如圖,已知函數(shù)yx+1yax+3的圖象交于點P,點P的橫坐標為1

1)關(guān)于x,y的方程組 的解是   ;

2a   ;

3)求出函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積.

【答案】(1);(2)-1;(3)4

【解析】

1)先求出點P1,2),再把P點代入解析式即可解答.

2)把P1,2)代入yax+3,即可解答.

3)根據(jù)yx+1x軸的交點為(﹣10),y=﹣x+3x軸的交點為(3,0),即可得到這兩個交點之間的距離,再根據(jù)三角形的面積公式,即可解答.

1)把x1代入yx+1,得出y2,

函數(shù)yx+1yax+3的圖象交于點P1,2),

x1y2同時滿足兩個一次函數(shù)的解析式.

所以關(guān)于x,y的方程組 的解是

故答案為;

2)把P1,2)代入yax+3

2a+3,解得a=﹣1

故答案為﹣1

3)∵函數(shù)yx+1x軸的交點為(﹣1,0),

y=﹣x+3x軸的交點為(3,0),

∴這兩個交點之間的距離為3﹣(﹣1)=4,

P12),

∴函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積為:×4×24

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應號召,某商場計劃購進甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如下表:

進價(/)

售價(/)

25

30

45

60

(1)如何進貨,進貨款恰好為46000元?

(2)如何進貨,商場銷售完節(jié)能燈時獲利最多且不超過進貨價的30%,此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《代數(shù)學》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時,構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )

A.6B.3-3C.3-2D.3-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行比賽的路程與時間的關(guān)系如圖所示.

(1)這是一場________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時距終點________米;

(4)甲在前8秒的平均速度是多少?甲在整個賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個賽程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,在平面直角坐標系xOy,直線y=kx+b(k0)與雙曲線相交于點A(m,3),B(-6,n),x軸交于點C.

(1)求直線y=kx+b(k0)的解析式;

(2)若點Px軸上,SACP=SBOC,求點P的坐標(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是請判斷該車大燈的設(shè)計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°tan22°,sin31°tan31°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2,已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.

(1)如果點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是_____,A,B兩點間的距離是_____;

(2)如果點A表示數(shù)3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數(shù)是_____,A,B兩點間的距離為_____;

(3)如果點A表示數(shù)-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是_____,A、B兩點間的距離是_____;

(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數(shù)?A,B兩點間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù)M0,對于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù) y=x0)和y=x+1﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)y=﹣x+1a≤x≤b,ba)的邊界值是2,且這個函數(shù)的最大值也是2,求b的取值范圍;

3)將函數(shù) y=x2﹣1≤x≤m,m≥0)的圖象向下平移m個單位,得到的函數(shù)的邊界值是t,當m在什么范圍時,滿足≤t≤1?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖(1)在RtΔABC中,∠ACB=900,∠B=600,在圖中作出∠ACB的三等分線CD,CE.(要求:尺規(guī)作圖,保留痕跡,不定作法)

(2)由(1)知,我們可以用尺規(guī)作出直角的三等分線,但是僅僅使用尺規(guī)卻不能把任意一個角分成三等分,為此,人們發(fā)明了許多等分角的機械器具,如圖(2)是用三張硬紙片自制的一個最簡單的三分角器,與半圓O相接的AB帶的長度與半圓的半徑相等:BD帶的長度任意,它的一邊與直線AC形成一個直角,且志半圓相切于點B,假設(shè)需要將∠KSM三等分,如圖(3),首先將角的頂點S置于BD上,角的一邊SK經(jīng)過點A,另一邊SM與半圓相切,連接SO,則SB,SO為∠KSM的三等分線,請你證明。

圖(1) 圖(2) 圖(3)

查看答案和解析>>

同步練習冊答案