【題目】如圖,一條流水生產(chǎn)線上L1、L2、L3、L4、L5處各有一名工人在工作,現(xiàn)要在流水生產(chǎn)線上設(shè)置一個(gè)零件供應(yīng)站P,使五人到供應(yīng)站P的距離總和最小,這個(gè)供應(yīng)站設(shè)置的位置是(  )

A. L2 B. L3 C. L4 D. 生產(chǎn)線上任何地方都一樣

【答案】B

【解析】試題分析:設(shè)在L3處為最佳,求出此時(shí)的總距離為L1L5+L2L4,假如設(shè)于任意的X處,求出總距離為L1L5+L2L4+L3X,和L1L5+L2L4比較即可.

解:在5名工人的情況下,設(shè)在L3處為最佳,這時(shí)總距離為L1L5+L2L4,

理由是:如果不設(shè)于L3處,而設(shè)于X處,則總距離應(yīng)為L1L5+L2L4+L3XL1L5+L2L4,

即在L35個(gè)工人到供應(yīng)站距離的和最。

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算。
(1)計(jì)算: +(﹣3)2﹣( ﹣1)0
(2)化簡(jiǎn):(2+m)(2﹣m)+m(m﹣1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從汽車(chē)燈的點(diǎn)O處發(fā)出的一束光線經(jīng)燈的反光罩反射后沿CO方向平行射出,如入射光線OA的反射光線為AB,OAB=75°.在如圖中所示的截面內(nèi),若入射光線OD經(jīng)反光罩反射后沿DE射出,且∠ODE=22°.則∠AOD的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=k1xb與雙曲線y相交于A(1,2)、B(m,-1)兩點(diǎn)

(1)求直線和雙曲線的解析式

(2)A1(x1,y1)、A2(x2y2)、A3(x3,y3)為雙曲線上的三點(diǎn),x1x2<0<x3,請(qǐng)直接寫(xiě)出y1、y2、y3的大小關(guān)系式;

(3)觀察圖象請(qǐng)直接寫(xiě)出不等式k1xb的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y= x和直線y=﹣x+3所夾銳角為α,則sinα的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校學(xué)生會(huì)準(zhǔn)備調(diào)查七年級(jí)學(xué)生參加“武術(shù)類(lèi)”、“書(shū)畫(huà)類(lèi)”、“棋牌類(lèi)”、“器樂(lè)類(lèi)”四類(lèi)校本課程的人數(shù):

(1)確定調(diào)查方式時(shí),甲同學(xué)說(shuō):“我到七年級(jí)(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說(shuō):“放學(xué)時(shí)我到校門(mén)口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說(shuō):“我到七年級(jí)每個(gè)班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”。請(qǐng)你指出哪位同學(xué)的調(diào)查方式最合理:

(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖。

請(qǐng)你根據(jù)以上圖表提供的信息解答下列問(wèn)題:

a= , b= ;

②在扇形統(tǒng)計(jì)圖中器樂(lè)類(lèi)所對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;

③若我校七年級(jí)有學(xué)生480人,請(qǐng)你估計(jì)大約有多少學(xué)生參加武術(shù)類(lèi)校本課程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家O,學(xué)校A和公園C的平面示意圖如圖所示,圖上距離OA=2cm,OC=2.5cm.

(1)學(xué)校A、公園C分別在小明家O的什么方向上?

(2)若學(xué)校A到小明家O的實(shí)際距離是400m,求公園C到小明家O的實(shí)際距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的例題

解方程

解:(1)當(dāng)x≥0時(shí),

原方程化為x2 – x –2=0,

解得:x1=2,x2= - 1(不合題意,舍去)

2)當(dāng)x0時(shí),

原方程化為x2 + x –2=0

解得:x1=1,(不合題意,舍去)x2= -2

∴原方程的根是x1=2, x2= - 2

3)請(qǐng)參照例題解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AOB是一條直線,∠1=2,3=4,AOFBOF=90°.

(1)AOC的補(bǔ)角是_____;

(2)____是∠AOC的余角;

(3)COF的補(bǔ)角是___.

查看答案和解析>>

同步練習(xí)冊(cè)答案