如右圖,直線d過正方形ABCD的頂點B,點A,C到直線d的距離分別是和2,求正方形ABCD的對角線AC的長.(7分)

 

①∵∠ABE=90°-∠CBF ,  ∠FCB=90°-∠CBF,

        ∴∠ABE=∠FCB.  (1分)

           ②∵∠AEB=∠BFC,AB=BC(2分)

         ∴△AEB≌△BFC (3分)

∴AE=BF= (4分) 

                在Rt△BCF中,BC2=BF2+CF2=10(5分)

         在Rt△ABC中,AC=2.(7分)

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OM的解析式為y=2x,直線CN過x軸上的一點C(-
3
5
a
,0)且與OM平行,交AD于點E,現(xiàn)正方形以每秒為
a
10
的速度勻速沿x軸正方向右平行移動,設運動時間為t秒,正方形被夾在直線CE和OF間的部分為S,
(1)求點A、B、D的坐標;
(2)求梯形ECOD的面積;
(3)0≤t<4時,寫出S與t的函數(shù)關系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=ax2+bx+c交y軸于點為A(0,3),交x軸于點B、C(點B在點C的左側(cè),)頂點為E(1,4),過點A作x軸的平行線AL,

(1)求拋物線的解析式及B點的坐標;
(2)點P從頂點E出發(fā)沿對稱軸右側(cè)的拋物線運動,過點P作直線PQ平行于y軸交直線AL于點Q,保持點Q以每秒1個單位的速度向右運動,同時點R從原點O出發(fā),以每秒2個單位的速度沿x軸正方向運動,設運動時間為t秒,
①若點P在直線AL的下方,當t為何值時,以A、P、Q為頂點的三角形與△AOR相似?
②當t=0時,以點A、P、R、Q為頂點的四邊形是梯形,如圖2,是否還存在另外的t值,使以點A、P、R、Q為頂點的四邊形是梯形?若存在,求出t的值,并直接寫出該梯形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,動點P、Q同時從原點O出發(fā),點P沿x軸正方向以每秒1個單位長度的速度運動,點Q沿y軸正方向以每秒3個單位長度的速度運動.過點P作x軸的垂線,分別交直線y=x+2、y=-x+1于C、D兩點.分別以OQ、CD為邊向右作正方形OQAB和正方形CDEF.
(1)當t為何值時,正方形OQAB與正方形CDEF的面積相等.
(2)設正方形OQAB與正方形CDEF的重疊部分的面積為S,求S與t的函數(shù)關系式.
(3)運動過程中,使△AEF為等腰三角形的不同t值有
4
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,平面直角坐標系中,O為坐標原點,直線AB:y=
1
2
x+1
分別交x、y軸于點A、B,過點A畫AC⊥AB,且AC=AB,連接BC得△ABC,將△ABC沿x軸正方向平移后得△A′B′C′.
(1)點B的坐標是
(0,1)
(0,1)
,點C的坐標是
(-3,2)
(-3,2)

(2)平移后當頂點C′正好落在直線AB上,求平移的距離和點B′的坐標;
(3)如圖2,將△A′B′C′從(2)的位置開始繼續(xù)向右平移,連接OB′、OC′,問當點B′在何位置時,△OB′C′的面積是△ABC面積的
12
5
倍?請你求出點B′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,在直角坐標系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OM的解析式為y=2x,直線CN過x軸上的一點C(數(shù)學公式,0)且與OM平行,交AD于點E,現(xiàn)正方形以每秒為數(shù)學公式的速度勻速沿x軸正方向右平行移動,設運動時間為t秒,正方形被夾在直線CE和OF間的部分為S,
(1)求點A、B、D的坐標;
(2)求梯形ECOD的面積;
(3)0≤t<4時,寫出S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案